[go: up one dir, main page]

login
Search: a193558 -id:a193558
     Sort: relevance | references | number | modified | created      Format: long | short | data
Squares equal to the difference between two successive primes of the form n^2+1.
+10
5
64, 144, 100, 1024, 4900, 10816, 11664, 12544, 18496, 102400, 41616, 46656, 331776, 298116, 44100, 451584, 270400, 141376, 372100, 678976, 504100, 1849600, 524176, 2890000, 3504384, 602176, 685584, 8702500, 1768900, 2160900, 868624, 532900, 624100, 12960000
OFFSET
1,1
EXAMPLE
64 is in the sequence because 6^2 + 1 = 37, 10^2+1 = 101 and 101 - 37 = 64 is square.
MAPLE
q:=2:for n from 2 to 100 do:p:=n^2+1:if type(p, prime)=true then x:=p-q:q:=p: z:=sqrt(x):if z=floor(z) then printf(`%d, `, z):else fi:od:
MATHEMATICA
Select[#[[2]]-#[[1]]&/@Partition[Select[Range[2000000]^2+1, PrimeQ], 2, 1], IntegerQ[ Sqrt[#]]&] (* Harvey P. Dale, Nov 08 2017 *)
CROSSREFS
Cf. A193558.
KEYWORD
nonn
AUTHOR
Michel Lagneau, Sep 04 2012
STATUS
approved
Least k such that p = k^2 + 1 and q = (k+2n)^2 + 1 are prime numbers with q - p square.
+10
2
24, 6, 312984, 16896, 120, 734994, 10640, 10, 1946016, 150, 171864, 180, 31200, 17136, 120, 84, 8976, 54, 137256, 300, 231504, 66, 184, 360126, 24, 5824, 2496, 224, 261696, 90, 4359344, 66, 50160, 68816, 280, 864, 1524696, 570, 219336, 11520, 8487984, 126, 22704
OFFSET
1,1
COMMENTS
4*n*(k + n) is a square. If n is a square, then k + n is also a square.
If n is prime, then n divides k.
If we add the additional condition that p and q are two consecutive primes of the form m^2 + 1, then we obtain the sequence A339008, with A339008(n) = a(n) for n = 1, 2, 3, 4, 6, 7 and 9.
EXAMPLE
a(1) = 24 because 24^2 + 1 = 577, (24 + 2)^2 + 1 = 677 and 677 - 577 = 10^2 is a square. The other values m such that p = m^2 + 1 and q = (m+2)^2 + 1 are primes with q - p square are 11024, 133224, 156024, 342224, 416024,...
a(2) = 6 because 6^2 + 1 = 37, (6 + 4)^2 + 1 = 101 and 101 - 37 = 8^2 is a square. The other values m such that p = m^2 + 1 and q = (m+4)^2 + 1 are primes with q - p square are 16, 126, 1350, 1456, 1566, 2310, 5200,...
MAPLE
for n from 1 to 50 do:
ii:=0:
for k from 2 by 2 to 10^9 while(ii=0) do:
p:=k^2+1:q:=(k+2*n)^2 +1:
if isprime(p) and isprime(q) and sqrt(q-p)=floor(sqrt(q-p))
then
ii:=1:printf(`%d %d \n`, n, k):
else
fi:
od:
od:
PROG
(PARI) a(n) = my(k=1); while (!(isprime(p=k^2+1) && isprime(q=(k+2*n)^2 + 1) && issquare(q-p)), k++); k; \\ Michel Marcus, Nov 18 2020
KEYWORD
nonn
AUTHOR
Michel Lagneau, Nov 18 2020
STATUS
approved
Least k such that p = k^2 + 1 and q = (k+2n)^2 + 1 are two consecutive prime numbers of the same form with q - p square.
+10
2
24, 6, 312984, 16896, 240, 734994, 10640, 10360, 1946016, 2550, 13189264, 72996, 416520, 2184336, 1584360, 202484, 232696, 1700150, 2394456, 375360, 8736504, 9237866, 53629744, 360126, 87000, 574339974, 82404216, 23237760, 1249877496, 826650, 127119344, 1527720
OFFSET
1,1
COMMENTS
4*n*(k + n) is a square. If n is a square, then k + n is also a square.
If n is prime, then n divides k.
a(n) = A339007(n) for n = 1, 2, 3, 4, 6, 7 and 9.
LINKS
EXAMPLE
a(1) = 24 because 24^2 + 1 = 577, (24 + 2)^2 + 1 = 677. The numbers 577 and 677 are two consecutive primes of the form m^2+1, and 677 - 577 = 10^2 is a square. The other values m such that p = m^2 + 1 and q = (m+2)^2 + 1 are consecutive primes with q - p square are 11024, 133224, 156024, 342224, 416024, ...
a(2) = 6 because 6^2 + 1 = 37, (6 + 4)^2 + 1 = 101. The numbers 37 and 101 are two consecutive primes of the form m^2+1, and 101 - 37 = 8^2 is a square. The other values m such that p = m^2 + 1 and q = (m+4)^2 + 1 are consecutive primes with q - p square are 16, 126, 1350, 1456, 1566, 2310, 5200, ...
MAPLE
for n from 1 to 25 do:
ii:=0:n1:=0:q:=2:
for k from 2 by 2 to 10^9 while(ii=0) do:
p:=k^2+1:
if isprime(p)
then
x:=p-q:q:=p:z:=sqrt(x):
if z=floor(z) and k-n1=2*n
then
ii:=1:printf(`%d %d \n`, n, n1):
else
n1:=k:
fi:
fi:
od:
od:
PROG
(PARI) consecutive(p, q) = {forprime(r = nextprime(p+1), precprime(q-1), if (isprime(r) && issquare(r-1), return(0)); ); return(1); }
a(n) = my(k=1); while (!(isprime(p=k^2+1) && isprime(q=(k+2*n)^2 + 1) && issquare(q-p) && consecutive(p, q)), k++); k; \\ Michel Marcus, Nov 30 2020
KEYWORD
nonn
AUTHOR
Michel Lagneau, Nov 18 2020
EXTENSIONS
a(26)-a(32) from Chai Wah Wu, Dec 06 2020
STATUS
approved
Numbers n such that A002496(n) mod A002496(n-1) is a perfect square.
+10
1
2, 8, 10, 25, 42, 147, 160, 169, 238, 260, 491, 544, 869, 890, 923, 1140, 1337, 1386, 1465, 1643, 1927, 3371, 4614, 5038, 5086, 5225, 5832, 5909, 5995, 7118, 7157, 8540, 9859, 12543, 13505, 13795, 13841, 14211, 15347, 17079, 17263, 18643, 20211, 21184, 21245
OFFSET
1,1
COMMENTS
A002496 : primes of form n^2+1.
The prime numbers of the sequence are 2, 491, 3371, 9859, 13841,...
The corresponding squares A002496(n) mod A002496 (n-1) are : {1, 144, 100, 1024, 4900, 10816, 11664, 12544,...} = {1} union {A216330} minus {64}.
LINKS
EXAMPLE
a(3)=10 because A002496(10) mod A002496(9)= 677 mod 577 = 10^2.
MAPLE
with(numtheory):nn:=360000:T:=array(1..nn):kk:=0:
for n from 1 to nn do:
if type(n^2+1, prime)=true then
kk:=kk+1:T[kk]:=n^2+1:
else
fi:
od:
for m from 1 to kk-1 do:
r:=irem(T[m+1], T[m]):z:=sqrt(r):
if z=floor(z)
then printf(`%d, `, m+1):
else
fi:
od:
MATHEMATICA
lst={}; lst1={}; nn=400000; Do[If[PrimeQ[n^2+1], AppendTo[lst, n^2+1]], {n, 1, nn}]; nn1:=Length[lst];
Do[If[IntegerQ[Sqrt[Mod[lst[[m]], lst[[m-1]]]]], AppendTo[lst1, m]], {m, 2, nn1}]; lst1
PROG
(Python)
from gmpy2 import t_mod, is_square, is_prime
A247592_list, A002496_list, m, c = [], [2], 2, 2
for n in range(1, 10**7):
....m += 2*n+1
....if is_prime(m):
........if is_square(t_mod(m, A002496_list[-1])):
............A247592_list.append(c)
........A002496_list.append(m)
........c += 1 # Chai Wah Wu, Sep 20 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Sep 20 2014
STATUS
approved
Pairs of primes (p,q) = (A002496(m), A002496(m+1)) such that q-p is a power r of the product of its prime factors for some m.
+10
0
37, 101, 577, 677, 15877, 16901, 57601, 62501, 33988901, 34035557, 113209601, 113507717, 121528577, 121572677, 345960001, 346332101, 635040001, 635544101, 7821633601, 7823402501, 17748634177, 17749167077, 24343488577, 24344112677, 97958984257, 97962740101
OFFSET
1,1
COMMENTS
Subsequence of A002496.
The corresponding sequence of numbers q - p is a subsequence of A076292.
Conjecture: the sequence is infinite.
The corresponding powers r are given by the sequence b(n) = 6, 2, 10, 2, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ... It seems that b(n) = 2 for n > 5.
EXAMPLE
The pair (257, 401) = (16^2+1, 20^2+1) is not in the sequence because 401 - 257 = 144 = 2^4*3^2.
The pair (577, 677) = (24^2+1, 26^2+1) is in the sequence because 577 - 677 = 100 = 2^2*5^2.
The pair (33988901, 34035557) = (5830^2+1, 5834^2+1) is in the sequence because 33988901 - 34035557 = 46656 = 2^6*3^6.
MAPLE
with(numtheory):
T:=array(1..26):nn:=350000:q:=5:j:=1:
for n from 4 by 2 to nn do:
p:=n^2+1:
if type(p, prime)=true
then
x:=p-q:r:=q:q:=p:
u:=factorset(x):n0:=nops(u):ii:=0:d:=product(u[i], i=1..n0):
for k from 2 to 20 while(ii=0) do:
if d^k=x
then ii=1:T[j]:=r:T[j+1]:=q:j:=j+2:
else
fi:
od:
fi:
od:
print(T):
PROG
(PARI) lista(nn) = my(lastp=2); forprime(p=nextprime(lastp+1), nn, if (issquare(p-1), if (ispowerful(p-lastp), my(f=factor(p-lastp)[, 2]); if (vecmin(f) == vecmax(f), print1(lastp, ", ", p, ", ")); ); lastp = p; ); ); \\ Michel Marcus, Feb 03 2022
KEYWORD
nonn
AUTHOR
Michel Lagneau, Feb 02 2022
STATUS
approved

Search completed in 0.005 seconds