[go: up one dir, main page]

login
Search: a192343 -id:a192343
     Sort: relevance | references | number | modified | created      Format: long | short | data
Constant term of the reduction of n-th polynomial at A158983 by x^2->x+2.
+0
2
2, 7, 100, 28051, 2357659852, 16675673548656023155, 834234264904007920903714901139450715276, 2087840426219791385723375854976408025594408461778898567573217959566013061037427
OFFSET
1,1
COMMENTS
For an introduction to reductions of polynomials by substitutions such as x^2->x+2, see A192232.
EXAMPLE
The first three polynomials at A158983 and their reductions are as follows:
p0(x)=2+x -> 2+x
p1(x)=5+4x+x^2 -> 7+5x
p2(x)=26+40x+26x^2+8x^3+x^4 -> 100+95x.
From these, we read
A192342=(2,7,100,...) and A192343=(1,5,95,...)
MATHEMATICA
q[x_] := x + 2;
p[0, x_] := x + 2;
p[n_, x_] := 1 + p[n - 1, x]^2 /; n > 0 (* polynomials defined at A158983 *)
Table[Expand[p[n, x]], {n, 0, 4}]
reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
x^y_?OddQ -> x q[x]^((y - 1)/2)};
t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 9}]
Table[Coefficient[Part[t, n], x, 0], {n, 1, 9}]
(* A192342 *)
Table[Coefficient[Part[t, n], x, 1], {n, 1, 9}]
(* A192343 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jun 28 2011
STATUS
approved

Search completed in 0.008 seconds