[go: up one dir, main page]

login
Search: a190310 -id:a190310
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of acute isosceles triangles, distinct up to congruence, on an n X n grid (or geoboard).
+10
2
0, 0, 2, 5, 11, 19, 29, 40, 58, 74, 94, 113, 141, 168, 201, 227, 267, 304, 348, 390, 438, 483, 537, 590, 657, 709, 776, 837, 913, 979, 1057, 1130, 1225, 1299, 1396, 1472, 1576, 1663, 1768, 1863, 1974
OFFSET
1,3
LINKS
Eric Weisstein's World of Mathematics, Geoboard.
Eric Weisstein's World of Mathematics, Acute Triangle.
Eric Weisstein's World of Mathematics, Isosceles Triangle.
FORMULA
a(n) = A189978(n) - A190310(n) - A108279(n).
CROSSREFS
KEYWORD
nonn
AUTHOR
Martin Renner, May 08 2011
STATUS
approved
Number of obtuse isosceles triangles, distinct up to congruence, on a centered hexagonal grid of size n.
+10
1
0, 1, 4, 10, 19, 30, 45, 61, 84, 106, 134, 165, 199, 234, 277, 321, 364, 412, 478, 523, 595
OFFSET
1,3
COMMENTS
A centered hexagonal grid of size n is a grid with A003215(n-1) points forming a hexagonal lattice.
LINKS
Eric Weisstein's World of Mathematics, Hex Number.
Eric Weisstein's World of Mathematics, Obtuse Triangle.
Eric Weisstein's World of Mathematics, Isosceles Triangle.
FORMULA
a(n) = A241237(n) - A241238(n).
EXAMPLE
For n = 2 the only kind of non-congruent obtuse isosceles triangles is the following:
/* *
. . *
\. .
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Martin Renner, Apr 17 2014
EXTENSIONS
a(7) from Martin Renner, May 31 2014
a(8)-a(21) from Giovanni Resta, May 31 2014
STATUS
approved

Search completed in 0.006 seconds