[go: up one dir, main page]

login
Search: a188892 -id:a188892
     Sort: relevance | references | number | modified | created      Format: long | short | data
11-gonal (or hendecagonal) numbers: a(n) = n*(9*n-7)/2.
+10
70
0, 1, 11, 30, 58, 95, 141, 196, 260, 333, 415, 506, 606, 715, 833, 960, 1096, 1241, 1395, 1558, 1730, 1911, 2101, 2300, 2508, 2725, 2951, 3186, 3430, 3683, 3945, 4216, 4496, 4785, 5083, 5390, 5706, 6031, 6365, 6708, 7060, 7421, 7791, 8170
OFFSET
0,3
COMMENTS
From Floor van Lamoen, Jul 21 2001: (Start)
Write 0,1,2,3,4,... in a triangular spiral, then a(n) is the sequence found by reading the line from 0 in the direction 0,1,...
The spiral begins:
15
/ \
16 14
/ \
17 3 13
/ / \ \
18 4 2 12
/ \ \
5 0---1 11
/ \
6---7---8---9--10
. (End)
(1), (4+7), (7+10+13), (10+13+16+19), ... - Jon Perry, Sep 10 2004
This sequence does not contain any triangular numbers other than 0 and 1. See A188892. - T. D. Noe, Apr 13 2011
Sequence found by reading the line from 0, in the direction 0, 11, ... and the parallel line from 1, in the direction 1, 30, ..., in the square spiral whose vertices are the generalized 11-gonal numbers A195160. - Omar E. Pol, Jul 18 2012
Starting with offset 1, the sequence is the binomial transform of (1, 10, 9, 0, 0, 0, ...). - Gary W. Adamson, Aug 01 2015
REFERENCES
Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196.
E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
Murray R. Spiegel, Calculus of Finite Differences and Difference Equations, "Schaum's Outline Series", McGraw-Hill, 1971, pp. 10-20, 79-94.
FORMULA
a(n) = n*(9*n-7)/2.
G.f.: x*(1+8*x)/(1-x)^3.
Row sums of triangle A131432. - Gary W. Adamson, Jul 10 2007
a(n) = 9*n + a(n-1) - 8 (with a(0)=0). - Vincenzo Librandi, Aug 06 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=0, a(1)=1, a(2)=11. - Harvey P. Dale, May 07 2012
a(n) = A218470(9n). - Philippe Deléham, Mar 27 2013
a(9*a(n)+37*n+1) = a(9*a(n)+37*n) + a(9*n+1). - Vladimir Shevelev, Jan 24 2014
a(n+y) - a(n-y-1) = (a(n+x) - a(n-x-1))*(2*y+1)/(2*x+1), 0 <= x < n, y <= x, a(0)=0. - Gionata Neri, May 03 2015
a(n) = A000217(n-1) + A000217(3*n-2) - A000217(n-2). - Charlie Marion, Dec 21 2019
Product_{n>=2} (1 - 1/a(n)) = 9/11. - Amiram Eldar, Jan 21 2021
E.g.f.: exp(x)*x*(2 + 9*x)/2. - Stefano Spezia, Dec 25 2022
MATHEMATICA
Table[n (9n-7)/2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 1, 11}, 51] (* Harvey P. Dale, May 07 2012 *)
PROG
(PARI) a(n)=(9*n-7)*n/2 \\ Charles R Greathouse IV, Jun 16 2011
(Magma) [n*(9*n-7)/2 : n in [0..50]]; // Wesley Ivan Hurt, Aug 01 2015
CROSSREFS
First differences of A007586.
Cf. A093644 ((9, 1) Pascal, column m=2). Partial sums of A017173.
KEYWORD
nonn,easy
STATUS
approved
18-gonal (or octadecagonal) numbers: a(n) = n*(8*n-7).
+10
25
0, 1, 18, 51, 100, 165, 246, 343, 456, 585, 730, 891, 1068, 1261, 1470, 1695, 1936, 2193, 2466, 2755, 3060, 3381, 3718, 4071, 4440, 4825, 5226, 5643, 6076, 6525, 6990, 7471, 7968, 8481, 9010, 9555, 10116, 10693, 11286, 11895, 12520
OFFSET
0,3
COMMENTS
Also, sequence found by reading the segment (0, 1) together with the line from 1, in the direction 1, 18, ..., in the square spiral whose vertices are the triangular numbers A000217. - Omar E. Pol, Apr 26 2008
This sequence does not contain any triangular numbers other than 0 and 1. See A188892. - T. D. Noe, Apr 13 2011
Also sequence found by reading the line from 0, in the direction 0, 18, ... and the parallel line from 1, in the direction 1, 51, ..., in the square spiral whose vertices are the generalized 18-gonal numbers. - Omar E. Pol, Jul 18 2012
Partial sums of 16n + 1 (with offset 0), compare A005570. - Jeremy Gardiner, Aug 04 2012
All x values for Diophantine equation 32*x + 49 = y^2 are given by this sequence and A139278. - Bruno Berselli, Nov 11 2014
This is also a star enneagonal number: a(n) = A001106(n) + 9*A000217(n-1). - Luciano Ancora, Mar 30 2015
REFERENCES
Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 189.
Elena Deza and Michel Marie Deza, Figurate numbers, World Scientific Publishing, 2012, page 6.
FORMULA
G.f.: x*(1+15*x)/(1-x)^3. - Bruno Berselli, Feb 04 2011
a(n) = 16*n + a(n-1) - 15, with n > 0, a(0) = 0. - Vincenzo Librandi, Aug 06 2010
a(16*a(n)+121*n+1) = a(16*a(n)+121*n) + a(16*n+1). - Vladimir Shevelev, Jan 24 2014
E.g.f.: (8*x^2 + x)*exp(x). - G. C. Greubel, Jul 18 2017
Sum_{n>=1} 1/a(n) = ((1+sqrt(2))*Pi + 2*sqrt(2)*arccoth(sqrt(2)) + 8*log(2))/14. - Amiram Eldar, Oct 20 2020
Product_{n>=2} (1 - 1/a(n)) = 8/9. - Amiram Eldar, Jan 22 2021
MAPLE
A051870 := proc(n) n*(8*n-7) ; end proc: seq(A051870(n), n=0..30) ; # R. J. Mathar, Feb 05 2011
MATHEMATICA
Table[n (8 n - 7), {n, 0, 40}] (* Bruno Berselli, Nov 11 2014 *)
PROG
(PARI) a(n)=n*(8*n-7) \\ Charles R Greathouse IV, Jul 19 2011
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 15 1999
STATUS
approved
Numbers n such that there is no square n-gonal number greater than 1.
+10
12
10, 20, 52, 164, 340, 580, 884, 1252, 1684, 2180, 2740, 4052, 4804, 5620, 6500, 7444, 8452, 9524, 10660, 11860, 13124, 14452, 15844, 17300, 18820, 20404, 22052, 25540, 27380, 29284, 31252, 33284, 35380, 37540, 39764, 42052, 44404, 46820, 49300, 51844
OFFSET
1,1
COMMENTS
It is easy to find squares that are triangular, pentagonal, hexagonal, etc. So it is somewhat surprising that there are no square 10-gonal numbers other than 0 and 1. For these n, the equation 2*x^2 = (n-2)*y^2 - (n-4)*y has no integer solutions x>1 and y>1.
Chu shows how to transform the equation into a generalized Pell equation. When n has the form 2k^2+2 (A005893), then the Pell equation has only a finite number of solutions and it is simple to select the n that produce no integer solutions greater than 1.
The general case is in A188950.
LINKS
Wenchang Chu, Regular polygonal numbers and generalized Pell equations, Int. Math. Forum 2 (2007), 781-802.
MATHEMATICA
P[n_, k_]:=1/2n(n(k-2)+4-k); data1=2#^2+2&/@Range[2, 161]; data2=Head[Reduce[m^2==P[n, #] && 1<m && 1<n && !m==n, {m, n}, Integers]]&/@data1; data3=Flatten[Position[data2, Symbol]]; data1[[#]]&/@data3 (* Ant King, Mar 01 2012 *)
CROSSREFS
Cf. A001107 (10-gonal numbers), A051872 (20-gonal numbers), A188892, A100252, A188950, A005893.
Subsequence of A271624. - Muniru A Asiru, Oct 16 2016
KEYWORD
nonn
AUTHOR
T. D. Noe, Apr 13 2011
STATUS
approved
Least triangular n-gonal number greater than 1, or 0 if none exists.
+10
5
3, 36, 210, 6, 55, 21, 325, 10, 0, 105, 36, 1275, 15, 45, 231, 0, 946, 276, 21, 11935, 66, 136, 351, 1596, 78, 28, 1225, 595, 820, 58653, 190, 325, 1335795, 36, 6670, 0, 561, 4005, 120, 1128, 1485, 203841, 45, 666, 6903, 465, 4950, 20910, 741, 153, 10731, 8911, 55, 1953
OFFSET
3,1
COMMENTS
See A188893 and A188894 for the corresponding indices of these terms. Note that a(n) is zero for n = 11, 18, 38 (numbers in A188892). Although the Mathematica program searches only the first 20000 triangular numbers for n-gonal numbers, the Reduce function can show that there are no triangular n-gonal numbers (other than 0 and 1) for these n.
MATHEMATICA
NgonIndex[n_, v_] := (-4 + n + Sqrt[16 - 8*n + n^2 - 16*v + 8*n*v])/(n - 2)/2; Table[k = 2; While[tr = k*(k+1)/2; i = NgonIndex[n, tr]; k < 20000 && ! IntegerQ[i], k++]; If[k==20000, tr=0]; tr, {n, 3, 50}]
Table[SelectFirst[PolygonalNumber[n, Range[2, 1000]], OddQ[Sqrt[8#+1]]&], {n, 3, 100}]/.Missing["NotFound"]->0 (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 10 2019 *)
CROSSREFS
Cf. A000217 (triangular numbers), A100252 (similar sequence for squares).
KEYWORD
nonn
AUTHOR
T. D. Noe, Apr 13 2011
STATUS
approved
Pairs of numbers (n,k) such that there is no n-gonal k-gonal number greater than 1, sorted by the sum n+k and then n.
+10
3
3, 11, 4, 10, 6, 11, 5, 14, 3, 18, 4, 20, 6, 18, 7, 22, 11, 18, 10, 20, 6, 27, 5, 29, 8, 26, 11, 27, 9, 30, 3, 38, 14, 29, 6, 38, 10, 34, 18, 27, 11, 38, 7, 47, 12, 42, 20, 34, 5, 50, 4, 52, 18, 38, 6, 51, 13, 46, 11, 51, 8, 56, 14, 50, 27, 38, 15, 54, 22, 47
OFFSET
1,1
COMMENTS
These are n and k such that the generalized Pell equation (k-2)*x^2 - (k-4)*x = (n-2)*y^2 - (n-4)*y has no solution in integers x>1 and y>1. The paper by Chu shows how to solve these equations. A necessary condition for a pair to be in this sequence is (n-2)(k-2) is a square. These (n,k) pairs indicate where the zeros are in triangle A189216, which gives the least n-gonal k-gonal number greater than 1. For triangular (n=3) and square (n=4) numbers, see A188892 and A188896 for lists of k.
LINKS
EXAMPLE
The pairs begin (3,11), (4,10), (6,11), (5,14), (3,18), (4,20), (6,18).
MATHEMATICA
maxSum=100; Reap[Do[k=s-n; If[k>n && IntegerQ[Sqrt[(n-2)*(k-2)]] && FindInstance[(k-2)*x^2 - (k-4)*x == (n-2)*y^2 - (n-4)*y && x>1 && y>1, {x, y}, Integers] == {}, Sow[{n, k}]], {s, 7, maxSum}, {n, 3, s-3}]][[2, 1]]
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
T. D. Noe, Apr 20 2011
STATUS
approved

Search completed in 0.008 seconds