[go: up one dir, main page]

login
Search: a188626 -id:a188626
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(2*n) = 3*n if n>0, a(2*n + 1) = 2*n + 1, a(0) = 1.
+10
4
1, 1, 3, 3, 6, 5, 9, 7, 12, 9, 15, 11, 18, 13, 21, 15, 24, 17, 27, 19, 30, 21, 33, 23, 36, 25, 39, 27, 42, 29, 45, 31, 48, 33, 51, 35, 54, 37, 57, 39, 60, 41, 63, 43, 66, 45, 69, 47, 72, 49, 75, 51, 78, 53, 81, 55, 84, 57, 87, 59, 90, 61, 93, 63, 96, 65, 99
OFFSET
0,3
FORMULA
a(n) is multiplicative with a(2^e) = 3 * 2^(e-1) if e>0, a(p^e) = p^e otherwise and a(0) = 1.
Euler transform of length 5 sequence [ 1, 2, 0, 0, -1].
G.f.: (1 - x^5) / ((1 - x) * (1 - x^2)^2).
G.f.: (1 + x + x^2 + x^3 + x^4) / (1 - 2*x^2 + x^4).
a(n) = A080512(n) if n>0.
First difference of A111711.
A188626(n) = p(-1) where p(x) is the unique degree-n polynomial such that p(k) = a(k) for k = 0, 1, ..., n.
From Amiram Eldar, Jan 03 2023: (Start)
Dirichlet g.f.: zeta(s-1)*(1+1/2^s).
Sum_{k=1..n} a(k) ~ (5/8) * n^2. (End)
EXAMPLE
G.f. = 1 + x + 3*x^2 + 3*x^3 + 6*x^4 + 5*x^5 + 9*x^6 + 7*x^7 + 12*x^8 + ...
MATHEMATICA
a[ n_] := Which[ n < 1, Boole[n == 0], OddQ[n], n, True, 3 n/2];
a[ n_] := SeriesCoefficient[ (1 + x + x^2 + x^3 + x^4) / (1 - 2*x^2 + x^4), {x, 0, n}];
PROG
(PARI) {a(n) = if( n<1, n==0, n%2, n, 3*n/2)};
(PARI) {a(n) = if( n<0, 0, polcoeff( (1 - x^5) / ((1 - x) * (1 - x^2)^2) + x * O(x^n), n))};
(Haskell)
import Data.List (transpose)
a257143 n = a257143_list !! n
a257143_list = concat $ transpose [a008486_list, a005408_list]
-- Reinhard Zumkeller, Apr 17 2015
CROSSREFS
Cf. A080512, A111711 (partial sums), A188626.
KEYWORD
nonn,mult,easy
AUTHOR
Michael Somos, Apr 16 2015
STATUS
approved
a(n) is the sum of the lengths of all the segments used to draw a rectangle of height 2^(n-1) and width n divided into 2^(n-1) rectangles of unit height, in turn, divided into rectangles of unit height and lengths corresponding to the parts of the compositions of n.
+10
0
4, 11, 27, 64, 149, 342, 775, 1736, 3849, 8458, 18443, 39948, 86029, 184334, 393231, 835600, 1769489, 3735570, 7864339, 16515092, 34603029, 72351766, 150994967, 314572824, 654311449, 1358954522, 2818572315, 5838471196, 12079595549, 24964497438, 51539607583, 106300440608
OFFSET
1,1
FORMULA
O.g.f.: x*(4 - 13*x + 13*x^2 - 3*x^3)/(1 - 3*x + 2*x^2)^2.
E.g.f.: (exp(2*x)*(3 + 6*x) + 4*x*exp(x) - 3)/4.
a(n) = 6*a(n-1) - 13*a(n-2) + 12*a(n-3) - 4*a(n-4) for n > 4.
a(n) = n + 3*(n + 1)*2^(n-2).
a(n) = A001792(n) + A188626(n).
a(n) = A045623(n) + A215149(n).
a(n) = A006127(n) + A053220(n).
EXAMPLE
Illustrations for n = 1..4:
_ _ _
|_| |_ _|
|_|_|
a(1) = 4 a(2) = 11
_ _ _ _ _ _ _
|_ _ _| |_ _ _ _|
|_ _|_| |_ _ _|_|
|_|_ _| |_|_ _ _|
|_|_|_| |_ _|_ _|
|_ _|_|_|
|_|_ _|_|
|_|_|_ _|
|_|_|_|_|
a(3) = 27 a(4) = 64
MATHEMATICA
LinearRecurrence[{6, -13, 12, -4}, {4, 11, 27, 64}, 32]
KEYWORD
nonn,easy
AUTHOR
Stefano Spezia, Jan 01 2021
STATUS
approved

Search completed in 0.007 seconds