[go: up one dir, main page]

login
Search: a174125 -id:a174125
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle T(n, k) = ((n-k)/6)*binomial(n-1, k-1)*binomial(2*n, 2*k) with T(n, 0) = T(n, n) = 1, read by rows.
+10
6
1, 1, 1, 1, 1, 1, 1, 5, 5, 1, 1, 14, 70, 14, 1, 1, 30, 420, 420, 30, 1, 1, 55, 1650, 4620, 1650, 55, 1, 1, 91, 5005, 30030, 30030, 5005, 91, 1, 1, 140, 12740, 140140, 300300, 140140, 12740, 140, 1, 1, 204, 28560, 519792, 2042040, 2042040, 519792, 28560, 204, 1, 1, 285, 58140, 1627920, 10581480, 19399380, 10581480, 1627920, 58140, 285, 1
OFFSET
0,8
FORMULA
T(n, k) = c(n)/(c(k)*c(n-k)) where c(n) = Product_{j=2..n} j*(j-1)*(2*j-1)/6 for n > 2 otherwise 1.
From G. C. Greubel, Feb 11 2021: (Start)
T(n, k) = ((n-k)/6)*binomial(n-1, k-1)*binomial(2*n, 2*k) with T(n, 0) = T(n, n) =1.
Sum_{k=0..n} T(n, k) = (n*(n-1)*(2*n-1)/6)*HypergeometricPFQ[{1-n, 3/2-n, 2-n}, {3/2, 2}, -1] + 2 - [n=0] (n*(n-1)*(2*n-1)/6)*A196148[n-2] + 2 - [n=0]. (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 1, 1;
1, 5, 5, 1;
1, 14, 70, 14, 1;
1, 30, 420, 420, 30, 1;
1, 55, 1650, 4620, 1650, 55, 1;
1, 91, 5005, 30030, 30030, 5005, 91, 1;
1, 140, 12740, 140140, 300300, 140140, 12740, 140, 1;
1, 204, 28560, 519792, 2042040, 2042040, 519792, 28560, 204, 1;
1, 285, 58140, 1627920, 10581480, 19399380, 10581480, 1627920, 58140, 285, 1;
MATHEMATICA
(* First program *)
c[n_]:= If[n<2, 1, Product[j*(j-1)*(2*j-1)/6, {j, 2, n}]];
T[n_, k_]:= c[n]/(c[k]*c[n-k]);
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten
(* Second program *)
T[n_, k_]:= If[k==0 || k==n, 1, ((n-k)/6)*Binomial[n-1, k-1]*Binomial[2*n, 2*k]];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 11 2021 *)
PROG
(Sage)
def T(n, k): return 1 if (k==0 or k==n) else ((n-k)/6)*binomial(n-1, k-1)*binomial(2*n, 2*k)
flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 11 2021
(Magma)
T:= func< n, k | k eq 0 or k eq n select 1 else ((n-k)/6)*Binomial(n-1, k-1)*Binomial(2*n, 2*k) >;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 11 2021
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
Roger L. Bagula, Mar 08 2010
EXTENSIONS
Edited by G. C. Greubel, Feb 11 2021
STATUS
approved
Triangle T(n, k) = (n/2)*binomial(n-1, k-1)*binomial(n-1, k) with T(n, 0) = T(n, n) = 1, read by rows.
+10
5
1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 6, 18, 6, 1, 1, 10, 60, 60, 10, 1, 1, 15, 150, 300, 150, 15, 1, 1, 21, 315, 1050, 1050, 315, 21, 1, 1, 28, 588, 2940, 4900, 2940, 588, 28, 1, 1, 36, 1008, 7056, 17640, 17640, 7056, 1008, 36, 1, 1, 45, 1620, 15120, 52920, 79380, 52920, 15120, 1620, 45, 1
OFFSET
0,8
FORMULA
Let c(n) = Product_{j=2..n} binomial(j,2) for n > 1 otherwise 1 then the number triangle is given by T(n, k) = c(n)/(c(k)*c(n-k)).
From G. C. Greubel, Feb 11 2021: (Start)
T(n, k) = (n/2)*binomial(n-1, k-1)*binomial(n-1, k) with T(n, 0) = T(n, n) = 1.
T(n, k) = binomial(n-k+1, 2)*A001263(n, k) with T(n, 0) = T(n, n) = 1.
Sum_{k=0..n} T(n,k) = binomial(n, 2)*C_{n-1} + 2 - [n=0], where C_{n} are the Catalan numbers (A000108) and [] is the Iverson bracket. (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 1, 1;
1, 3, 3, 1;
1, 6, 18, 6, 1;
1, 10, 60, 60, 10, 1;
1, 15, 150, 300, 150, 15, 1;
1, 21, 315, 1050, 1050, 315, 21, 1;
1, 28, 588, 2940, 4900, 2940, 588, 28, 1;
1, 36, 1008, 7056, 17640, 17640, 7056, 1008, 36, 1;
1, 45, 1620, 15120, 52920, 79380, 52920, 15120, 1620, 45, 1;
MATHEMATICA
(* First program *)
c[n_]:= If[n<2, 1, Product[Binomial[j, 2], {j, 2, n}]];
T[n_, k_]:= c[n]/(c[k]*c[n-k]);
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten
(* Second program *)
T[n_, k_]:= If[k==0 || k==n, 1, (n/2)*Binomial[n-1, k-1]*Binomial[n-1, k]];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 11 2021 *)
PROG
(Sage)
def T(n, k): return 1 if (k==0 or k==n) else (n/2)*binomial(n-1, k-1)*binomial(n-1, k)
flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 11 2021
(Magma)
T:= func< n, k | k eq 0 or k eq n select 1 else (n/2)*Binomial(n-1, k-1)*Binomial(n-1, k) >;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 11 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Mar 08 2010
EXTENSIONS
Edited by G. C. Greubel, Feb 11 2021
STATUS
approved
Triangle T(n, k) = (2*k/(k+1))*binomial(n-1, k)*binomial(n+1, k) with T(n, 0) = T(n, n) = 1, read by rows.
+10
5
1, 1, 1, 1, 3, 1, 1, 8, 8, 1, 1, 15, 40, 15, 1, 1, 24, 120, 120, 24, 1, 1, 35, 280, 525, 280, 35, 1, 1, 48, 560, 1680, 1680, 560, 48, 1, 1, 63, 1008, 4410, 7056, 4410, 1008, 63, 1, 1, 80, 1680, 10080, 23520, 23520, 10080, 1680, 80, 1, 1, 99, 2640, 20790, 66528, 97020, 66528, 20790, 2640, 99, 1
OFFSET
0,5
FORMULA
Let c(n) = Product_{j=2..n} (j^2 - 1) for n > 1 otherwise 1 then the number triangle is given by T(n, k) = c(n)/(c(k)*c(n-k)).
From G. C. Greubel, Feb 11 2021: (Start)
T(n, k) = (2*k/(k+1))*binomial(n-1, k)*binomial(n+1, k) with T(n, 0) = T(n, n) = 1.
T(n, k) = 2*((n+1)*(n-k)/(k+1))*A001263(n, k).
Sum_{k=0..n} T(n, k) = (2/(n+2))*( (n^2-1)*C_{n} + 1), where C_{n} are the Catalan numbers (A000108). (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 3, 1;
1, 8, 8, 1;
1, 15, 40, 15, 1;
1, 24, 120, 120, 24, 1;
1, 35, 280, 525, 280, 35, 1;
1, 48, 560, 1680, 1680, 560, 48, 1;
1, 63, 1008, 4410, 7056, 4410, 1008, 63, 1;
1, 80, 1680, 10080, 23520, 23520, 10080, 1680, 80, 1;
1, 99, 2640, 20790, 66528, 97020, 66528, 20790, 2640, 99, 1;
MATHEMATICA
(* First program *)
c[n_]:= If[n<2, 1, Product[i^2 -1, {i, 2, n}]];
T[n_, k_]:= c[n]/(c[k]*c[n-k]);
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten
(* Second program *)
T[n_, k_]:= If[k==0 || k==n, 1, (2*k/(k+1))*Binomial[n+1, k]*Binomial[n-1, k]];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 11 2021 *)
PROG
(Sage)
def T(n, k): return 1 if (k==0 or k==n) else (2*k/(k+1))*binomial(n-1, k)*binomial(n+1, k)
flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 11 2021
(Magma)
T:= func< n, k | k eq 0 or k eq n select 1 else (2*k/(k+1))*Binomial(n-1, k)*Binomial(n+1, k) >;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 11 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Mar 08 2010
EXTENSIONS
Edited by G. C. Greubel, Feb 11 2021
STATUS
approved
Triangle T(n, k, q) = (q+1)*binomial(n, k)*(Pochhammer(q+1, n)/(Pochhammer(q+1, k)*Pochhammer(q+1, n-k))), with T(n, 0) = T(n, n) = 1, and q = 1, read by rows.
+10
5
1, 1, 1, 1, 6, 1, 1, 12, 12, 1, 1, 20, 40, 20, 1, 1, 30, 100, 100, 30, 1, 1, 42, 210, 350, 210, 42, 1, 1, 56, 392, 980, 980, 392, 56, 1, 1, 72, 672, 2352, 3528, 2352, 672, 72, 1, 1, 90, 1080, 5040, 10584, 10584, 5040, 1080, 90, 1, 1, 110, 1650, 9900, 27720, 38808, 27720, 9900, 1650, 110, 1
OFFSET
0,5
COMMENTS
Triangles of this class, depending upon q, are of the form T(n, k, q) = (q+1)*binomial(n, k)*(Pochhammer(q+1, n)/(Pochhammer(q+1, k)*Pochhammer(q+1, n-k))), with T(n, 0) = T(n, n) = 1, and have the row sums Sum_{k=0..n} T(n, k, q) = q*(q+1)*C_{n+q}/binomial(n+2*q, q-1) - 2*q + q*[n=0], where C_{n} are the Catalan numbers (A000108) and [] is the Iverson bracket. - G. C. Greubel, Feb 11 2021
LINKS
Samuele Giraudo, Tree series and pattern avoidance in syntax trees, arXiv:1903.00677 [math.CO], 2019.
FORMULA
Let c(n, q) = Product_{j=2..n} j*(j+q) for n > 2, otherwise 1, then the number triangle is given by T(n, k, q) = c(n, q)/(c(k, q)*c(n-k, q)) for q = 1.
From G. C. Greubel, Feb 11 2021: (Start)
T(n, k, q) = (q+1)*binomial(n, k)*(Pochhammer(q+1, n)/(Pochhammer(q+1, k)*Pochhammer(q+1, n-k))), with T(n, 0) = T(n, n) = 1, and q = 1.
Sum_{k=0..n} T(n, k, 1) = 2*A000108(n+1) - 2 + [n=0]. (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 6, 1;
1, 12, 12, 1;
1, 20, 40, 20, 1;
1, 30, 100, 100, 30, 1;
1, 42, 210, 350, 210, 42, 1;
1, 56, 392, 980, 980, 392, 56, 1;
1, 72, 672, 2352, 3528, 2352, 672, 72, 1;
1, 90, 1080, 5040, 10584, 10584, 5040, 1080, 90, 1;
1, 110, 1650, 9900, 27720, 38808, 27720, 9900, 1650, 110, 1;
MATHEMATICA
(* First program *)
c[n_, q_]:= If[n<2, 1, Product[i*(i+q), {i, 2, n}]];
T[n_, m_, q_]:= c[n, q]/(c[k, q]*c[n-k, q]);
Table[T[n, k, 1], {n, 0, 12}, {k, 0, n}]//Flatten
(* Second program *)
T[n_, k_, q_]:= If[k==0 || k==n, 1, (q+1)*Binomial[n, k]*(Pochhammer[q+1, n]/(Pochhammer[q+1, k]*Pochhammer[q+1, n-k]))];
Table[T[n, k, 1], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 11 2021 *)
PROG
(Sage)
def T(n, k, q): return 1 if (k==0 or k==n) else (q+1)*binomial(n, k)*(rising_factorial(q+1, n)/(rising_factorial(q+1, k)*rising_factorial(q+1, n-k)))
flatten([[T(n, k, 1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 11 2021
(Magma)
c:= func< n, q | n lt 2 select 1 else (&*[j*(j+q): j in [2..n]]) >;
T:= func< n, k, q | c(n, q)/(c(k, q)*c(n-k, q)) >;
[T(n, k, 1): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 11 2021
CROSSREFS
Cf. this sequence (q=1), A174125 (q=2).
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Mar 09 2010
EXTENSIONS
Edited by G. C. Greubel, Feb 11 2021
STATUS
approved

Search completed in 0.007 seconds