Displaying 1-10 of 10 results found.
page
1
Decimal expansion of Pi*log(2).
+10
9
2, 1, 7, 7, 5, 8, 6, 0, 9, 0, 3, 0, 3, 6, 0, 2, 1, 3, 0, 5, 0, 0, 6, 8, 8, 8, 9, 8, 2, 3, 7, 6, 1, 3, 9, 4, 7, 3, 3, 8, 5, 8, 3, 7, 0, 0, 3, 6, 9, 2, 8, 6, 2, 9, 4, 3, 2, 5, 7, 9, 5, 2, 5, 3, 1, 9, 4, 3, 0, 8, 5, 4, 9, 1, 7, 6, 7, 4, 1, 9, 8, 6, 4, 3, 0, 3, 2, 8, 9, 6, 1, 6, 1, 0, 6, 6, 3, 0, 2, 5, 0, 5, 7, 6, 1
COMMENTS
Madelung constant b2(2), negated.
REFERENCES
G. Boros and V. H. Moll, Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals, Cambridge University Press, 2004 (equation 13.6.6).
FORMULA
Pi*log(2) = -(8/3)*int(log(x)/sqrt(1+4*x-4*x^2), x=0..1). - John M. Campbell, Feb 07 2012
Pi*log(2) = int((x/sin(x))^2, x=0..Pi/2) = int(log(x^2+1)/(x^2+1), x=0..infinity) = int(-log(cos(x)), x=-Pi/2..Pi/2) = int(arctan(1/x)^2, x=0..infinity). - Jean-François Alcover, May 30 2013
Equals Integral_{x=-1..1} arcsin(x) dx / x.
Equals Integral_{x=-Pi/2..Pi/2} x*cot(x) dx. (End)
Equals Integral_{x = 0..oo} log(x^2 + 4)/(x^2 + 4) dx. - Peter Bala, Jul 22 2022
EXAMPLE
2.1775860903036021305006888982376139...
EXTENSIONS
Corrected by Antti Ahti (antti.ahti(AT)tkk.fi), Nov 17 2004
Decimal expansion of Pi/8*(6*zeta(3)+Pi^2*log(2)+4*log(2)^3).
+10
4
6, 0, 4, 1, 8, 8, 2, 9, 0, 9, 7, 7, 5, 0, 9, 3, 5, 2, 2, 1, 5, 0, 4, 2, 4, 1, 3, 0, 6, 7, 5, 9, 9, 5, 9, 8, 5, 5, 0, 8, 7, 1, 0, 3, 0, 5, 7, 7, 4, 6, 4, 1, 9, 0, 7, 2, 5, 8, 6, 0, 1, 0, 1, 5, 2, 6, 0, 0, 4, 3, 0, 2, 5, 4, 6, 5, 5, 7, 5, 8, 1, 6, 0, 4, 0, 4, 7, 0, 8, 2, 6, 5, 8, 8, 2, 6, 1, 6, 9, 5, 1, 5, 5, 8, 1
COMMENTS
The absolute value of the integral {x=0..Pi/2} log(sin(x))^3 dx. The absolute value of m=3 of sqrt(Pi)/2*(d^m/da^m(gamma((a+1)/2)/gamma(a/2+1))) at a=0. - Seiichi Kirikami and Peter J. C. Moses, Oct 07 2011
REFERENCES
I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 4th edition, 3.621.1
EXAMPLE
6.041882909775093522150424130675995...
MAPLE
Pi/8*(6*Zeta(3)+Pi^2*log(2)+4*log(2)^3) ; evalf(%) ; # R. J. Mathar, Oct 08 2011
MATHEMATICA
RealDigits[N[Pi/8 (6 Zeta[3] + Pi^2 Log[2] + 4 Log[2]^3), 150][[1]]
Sqrt[Pi]/2*Derivative[3][Gamma[(#+1)/2]/Gamma[#/2+1]&][0] // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, Mar 25 2013 *)
PROG
(PARI) Pi/8*(6*zeta(3)+Pi^2*log(2)+4*log(2)^3) \\ G. C. Greubel, Feb 12 2017
Decimal expansion of Pi^3*log(2)/24 - 3*Pi*zeta(3)/16.
+10
3
1, 8, 7, 4, 2, 6, 4, 2, 2, 8, 2, 8, 2, 3, 1, 0, 8, 0, 2, 6, 4, 5, 6, 9, 3, 1, 2, 2, 7, 3, 2, 7, 5, 0, 8, 1, 2, 5, 3, 0, 6, 9, 0, 1, 1, 7, 7, 0, 3, 1, 1, 5, 5, 7, 0, 8, 1, 0, 3, 2, 6, 0, 8, 3, 8, 8, 1, 8, 0, 2, 3, 3, 3, 1, 0, 6, 2, 0, 2, 8, 4, 9, 7, 6, 4, 9, 9, 2, 3, 1, 0, 6, 0, 2, 4, 4, 5, 8, 8, 1
COMMENTS
The absolute value of the integral {x=0..Pi/2} x^2*log(sin(x )) dx or (d^2/da^2 (integral {x=0..Pi/2} cos(ax)*log(sin(x )) dx)) at a=0. The absolute value of (sum {n=1..infinity} (limit { a -> 0} (d^2/da^2 (sin((a+2n)*Pi/2)/n/(a+2n)))))-(Pi/2)^3*log(2)/3. [ Seiichi Kirikami and Peter J. C. Moses]
REFERENCES
I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, series and Products, 1.441.2, 4th edition, log(sin(x))=-(sum {1..infinity} cos(2nx)/n)-log(2).
LINKS
R. E. Crandall, J. P. Buhler, On the evaluation of Euler sums, Exper. Math. 3 (4) (1994) 275 (discuss int_{0..1} x^n*cot(x) dx which is obtained by partial integration).
EXAMPLE
0.18742642282823108026...
MATHEMATICA
RealDigits[ N[Pi (2 Pi^2 Log[2] - 9 Zeta[3]) / 48, 105] ][[1]]
PROG
(PARI) Pi^3*log(2)/24 - 3*Pi*zeta(3)/16 \\ Michel Marcus, Oct 25 2017
Decimal expansion of Pi^4*log(2)/64 - 9*Pi^2*zeta(3)/64 + 93*zeta(5)/128.
+10
3
1, 4, 0, 0, 2, 4, 1, 0, 1, 7, 0, 6, 8, 5, 2, 3, 1, 7, 1, 0, 0, 2, 7, 0, 5, 7, 8, 8, 7, 5, 5, 3, 5, 0, 7, 5, 3, 2, 2, 4, 2, 8, 2, 1, 2, 7, 8, 5, 7, 7, 0, 5, 0, 8, 9, 8, 8, 1, 8, 5, 9, 6, 3, 1, 4, 1, 1, 6, 2, 7, 7, 1, 4, 6, 3, 7, 0, 5, 9, 7, 0, 2, 3, 0, 4, 9, 0, 7, 6, 1, 1, 0, 2, 6, 6, 3, 0, 9, 0, 5
COMMENTS
The absolute value of the integral {x=0..Pi/2} x^3*log(sin(x )) dx or (d^3/da^3 (integral {x=0..Pi/2} sin(ax )*log(sin(x )) dx)) at a=0. The absolute value of (sum {n=1..infinity} (limit { a -> 0} (d^3/da^3 ((1-cos((a+2n)*Pi/2))/n/(a+2n)))))-(Pi/2)^4*log(2)/4. [ Seiichi Kirikami and Peter J. C. Moses]
REFERENCES
I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, series and Products, 4th edition, 1.441.2, log(sin(x))=-(sum {1..infinity} cos(2nx)/n)-log(2).
EXAMPLE
-0.14002410170685231710...
MATHEMATICA
RealDigits[N[(2 Pi^4 Log[2] - 18 Pi^2 Zeta[3] + 93 Zeta[5]) / 128, 105]][[1]]
PROG
(PARI) Pi^4*log(2)/64 - 9*Pi^2*zeta(3)/64 + 93*zeta(5)/128 \\ Michel Marcus, Oct 25 2017
Decimal expansion of Pi/2*(Pi^2/12 + (log(2))^2).
+10
3
2, 0, 4, 6, 6, 2, 2, 0, 2, 4, 4, 7, 2, 7, 4, 0, 6, 4, 6, 1, 6, 9, 6, 4, 1, 0, 0, 8, 1, 7, 6, 9, 7, 3, 4, 7, 6, 6, 3, 7, 4, 4, 1, 9, 5, 3, 4, 9, 4, 6, 5, 6, 2, 6, 0, 6, 1, 0, 2, 6, 8, 5, 5, 2, 7, 2, 5, 9, 0, 6, 6, 8, 7, 9, 5, 1, 2, 1, 7, 3, 3, 6, 5, 8, 4, 6, 8, 8, 4, 6, 7, 6, 3, 2, 9, 1, 2, 5, 2, 5, 3, 4, 3, 4, 7
COMMENTS
The value of the integral_{x=0..Pi/2} log(sin(x))^2 dx. The value of sqrt(Pi)/2*(d^2/da^2(gamma((a+1)/2)/gamma(a/2+1))) at a=0. - Seiichi Kirikami and Peter J. C. Moses, Oct 07 2011
REFERENCES
I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 4th edition, 3.621.1
FORMULA
Equals Integral_{x=0..1} log(x)^2/sqrt(1-x^2) dx. - Amiram Eldar, May 27 2023
EXAMPLE
2.04662202447274064616964100817...
MATHEMATICA
RealDigits[N[Pi/2 (Pi^2/12 + Log[2]^2), 150] [[1]]
Decimal expansion of (-2*Catalan + Pi*log(2))/2.
+10
2
1, 7, 2, 8, 2, 7, 4, 5, 0, 9, 7, 4, 5, 8, 2, 0, 5, 0, 1, 9, 5, 7, 4, 0, 9, 3, 4, 1, 8, 6, 4, 2, 2, 8, 6, 2, 8, 9, 5, 1, 4, 2, 4, 7, 5, 9, 0, 2, 9, 7, 1, 0, 1, 2, 8, 9, 6, 3, 9, 9, 5, 0, 6, 9, 7, 5, 3, 9, 1, 2, 5, 4, 8, 1, 2, 1, 1, 6, 2, 2, 3, 7, 3, 5, 8, 0, 7, 9, 6, 7, 8, 7, 9, 2, 1, 6, 4, 0, 6, 2, 8, 0
FORMULA
Equals Integral_{x=0..1; y=0..1} [x^2+y^2>1]/(x^2+y^2) where [] is the Iverson bracket.
Equals Sum_{k>=1} (-1)^(k+1) * H(k)/(2*k+1), where H(k) = A001008(k)/ A002805(k) is the k-th harmonic number. - Amiram Eldar, Jul 22 2020
EXAMPLE
0.17282745097458205019574...
MATHEMATICA
First[RealDigits[Pi*Log[2]/2 - Catalan, 10, 100]] (* Paolo Xausa, Apr 27 2024 *)
Decimal expansion of (2*Pi^5*log(2) - 30*Pi^3*zeta(3) + 225*Pi*zeta(5))/320.
+10
0
1, 2, 2, 0, 4, 7, 2, 9, 5, 8, 8, 5, 9, 2, 8, 7, 2, 1, 6, 3, 3, 2, 6, 0, 2, 9, 6, 2, 8, 2, 2, 9, 5, 2, 8, 8, 1, 4, 4, 5, 6, 8, 7, 2, 0, 5, 0, 5, 6, 9, 2, 4, 2, 8, 1, 5, 5, 4, 3, 8, 5, 7, 9, 2, 6, 4, 2, 7, 6, 2, 1, 5, 6, 7, 7, 7, 9, 5, 5, 8, 6, 5, 2, 1, 0, 9, 1, 3, 5, 3, 0, 9, 5, 5, 0, 4, 5, 5, 8, 2, 8, 0, 9, 3, 5
COMMENTS
The absolute value of the integral{x=0..Pi/2} x^4*log(sin(x )) dx or(d^4/da^4(integral {x=0..Pi/2} cos(ax)*log(sin(x )) dx)) at a=0. The absolute value of m=2 of (-1)^(m+1)*(sum {n=1..infinity} (limit {a -> 0} (d^(2m)/da^(2m)(sin((a+2n)*Pi/2)/n/(a+2n)))))-(Pi/2)^(2m+1)*log(2)/(2m+1). [ Seiichi Kirikami and Peter J. C. Moses, Sep 01 2011]
REFERENCES
I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 4th edition, 1.441.2
EXAMPLE
0.12204729588592872163...
MATHEMATICA
RealDigits[ N[Pi (2 Pi^4*Log[2]-30 Pi^2*Zeta[3]+225 zeta[5])/320, 150]][[1]]
Decimal expansion of (4*Pi^6*log(2) - 90*Pi^4*zeta(3) + 1350*Pi^2*zeta(5) - 5715*zeta(7))/1536.
+10
0
1, 1, 7, 5, 7, 5, 8, 3, 4, 0, 7, 2, 3, 3, 2, 4, 8, 2, 0, 6, 2, 4, 2, 9, 0, 6, 7, 9, 4, 9, 1, 4, 7, 5, 8, 4, 3, 3, 4, 1, 6, 4, 3, 8, 9, 9, 8, 1, 6, 2, 9, 0, 8, 8, 8, 6, 9, 5, 3, 0, 2, 4, 7, 6, 4, 9, 1, 9, 1, 2, 8, 4, 2, 7, 1, 5, 5, 9, 4, 7, 1, 1, 8, 2, 6, 8, 8, 8, 9, 0, 0, 3, 1, 4, 1, 1, 5, 9, 4, 4, 7, 1, 9, 9, 4
COMMENTS
The absolute value of the integral {x=0..Pi/2} x^5*log(sin(x )) dx or (d^5/da^5 (integral {x=0..Pi/2} sin(ax)*log(sin(x )) dx)) at a=0. The absolute value of m=2 of (-1)^(m+1)*(sum {n=1..infinity} (limit {a -> 0} (d^(2m+1)/da^(2m+1) ((1-cos((a+2n)*Pi/2))/n/(a+2n)))))-(pi/2)^2(m+1)*log(2)/2/(m+1).
REFERENCES
I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 4th edition, 1.441.2
EXAMPLE
0.11757583407233248206...
MATHEMATICA
RealDigits[ N[(4 Pi^6*Log[2]-90 Pi^4*Zeta[3]+1350 Pi^2*Zeta[5]-5715 Pi^2*Zeta[7])/1536, 150]][[1]]
Decimal expansion of 7*zeta(3)/16 + Pi^2*log(2)/8, where zeta is the Riemann zeta function.
+10
0
1, 3, 8, 1, 0, 3, 5, 9, 5, 3, 1, 1, 4, 4, 6, 2, 0, 6, 7, 9, 6, 8, 3, 2, 0, 3, 3, 9, 9, 0, 5, 5, 2, 1, 3, 7, 9, 8, 7, 2, 1, 5, 3, 8, 8, 3, 9, 2, 2, 4, 5, 7, 4, 5, 0, 1, 9, 9, 6, 3, 5, 2, 8, 6, 5, 2, 6, 6, 9, 3, 8, 6, 9, 8, 9, 6, 8, 5, 8, 0, 6, 7, 7, 9, 4, 8, 1, 8, 2, 0, 7, 9, 3, 9, 7, 3, 3, 3, 4, 8, 1, 5, 6
FORMULA
Equals the absolute value of Integral_{x=0..Pi/2} x*log(cos x) dx.
EXAMPLE
1.38103595311446206796832033990552137987215388392245...
MAPLE
7*Zeta(3)/16 + Pi^2*log(2)/8 ; evalf(%) ;
MATHEMATICA
RealDigits[7*Zeta[3]/16 + Pi^2*Log[2]/8, 10, 120][[1]] (* Amiram Eldar, Aug 05 2024 *)
Decimal expansion of Pi*(Pi^2*log(2) + 4*log(2)^3 + 6*zeta(3))/48.
+10
0
1, 0, 0, 6, 9, 8, 0, 4, 8, 4, 9, 6, 2, 5, 1, 5, 5, 8, 7, 0, 2, 5, 0, 7, 0, 6, 8, 8, 4, 4, 5, 9, 9, 9, 3, 3, 0, 9, 1, 8, 1, 1, 8, 3, 8, 4, 2, 9, 5, 7, 7, 3, 6, 5, 1, 2, 0, 9, 7, 6, 6, 8, 3, 5, 8, 7, 6, 6, 7, 3, 8, 3, 7, 5, 7, 7, 5, 9, 5, 9, 6, 9, 3, 4, 0, 0, 7, 8, 4, 7, 1, 0, 9, 8, 0, 4, 3, 6, 1, 5, 8, 5
COMMENTS
Apart from a factor sqrt(Pi)/16 the same as Adamchik's generalized Stirling number [1/2,4].
FORMULA
Equals 5F4(1/2,1/2,1/2,1/2,1/2; 3/2,3/2,3/2,3/2; 1) = Sum_{k>= 0} binomial(2k,k)/[2^(2k)*(2k+1)^4].
MAPLE
1/48*Pi*(Pi^2*log(2)+4*log(2)^3+6*Zeta(3)) ; evalf(%) ;
MATHEMATICA
First[RealDigits[Pi*(Pi^2*Log[2] + 4*Log[2]^3 + 6*Zeta[3])/48, 10, 100]] (* Paolo Xausa, Aug 23 2024 *)
Search completed in 0.014 seconds
|