Displaying 1-7 of 7 results found.
page
1
1, 1, 7, 31, 175, 991, 5881, 35617, 219871, 1376095, 8710537, 55644337, 358198369, 2320792657, 15120204295, 98984058271, 650725327231, 4293779332927, 28425752310361, 188739799967425, 1256510215733185
Array read by antidiagonals: T(n,k) is the number of {-1,0,1} n X k matrices with all rows and columns summing to zero.
+10
13
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 7, 7, 1, 1, 1, 1, 19, 31, 19, 1, 1, 1, 1, 51, 175, 175, 51, 1, 1, 1, 1, 141, 991, 2371, 991, 141, 1, 1, 1, 1, 393, 5881, 32611, 32611, 5881, 393, 1, 1, 1, 1, 1107, 35617, 481381, 1084851, 481381, 35617, 1107, 1, 1
COMMENTS
Equivalently, the number of n X k 0..2 arrays with row sums k and column sums n.
EXAMPLE
Array begins:
====================================================================
n\k | 0 1 2 3 4 5 6 7
----|---------------------------------------------------------------
0 | 1 1 1 1 1 1 1 1 ...
1 | 1 1 1 1 1 1 1 1 ...
2 | 1 1 3 7 19 51 141 393 ...
3 | 1 1 7 31 175 991 5881 35617 ...
4 | 1 1 19 175 2371 32611 481381 7343449 ...
5 | 1 1 51 991 32611 1084851 39612501 1509893001 ...
6 | 1 1 141 5881 481381 39612501 3680774301 360255871641 ...
7 | 1 1 393 35617 7343449 1509893001 360255871641 ...
...
The T(3,2) = 7 matrices are:
[0 0] [ 0 0] [ 0 0] [ 1 -1] [-1 1] [ 1 -1] [-1 1]
[0 0] [ 1 -1] [-1 1] [ 0 0] [ 0 0] [-1 1] [ 1 -1]
[0 0] [-1 1] [ 1 -1] [-1 1] [ 1 -1] [ 0 0] [ 0 0]
CROSSREFS
Columns k=0..14 are A000012, A000012, A002426, A172634, A172642, A172639, A172633, A172636, A172638, A172641, A172637, A172644, A172640, A172643, A172635.
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) is Sum_{i=0..n} (-1)^(n-i)*binomial(n,i)*Sum_{j=0..i} binomial(i,j)^k.
+10
8
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 1, 0, 1, 1, 7, 7, 1, 0, 1, 1, 15, 31, 19, 1, 0, 1, 1, 31, 115, 175, 51, 1, 0, 1, 1, 63, 391, 1255, 991, 141, 1, 0, 1, 1, 127, 1267, 8071, 13671, 5881, 393, 1, 0, 1, 1, 255, 3991, 49399, 161671, 160461, 35617, 1107, 1, 0
COMMENTS
T(n,k) is the constant term in the expansion of (-1 + Product_{j=1..k-1} (1 + x_j) + Product_{j=1..k-1} (1 + 1/x_j))^n for k > 0.
For fixed k > 0, T(n,k) ~ (2^k - 1)^(n + (k-1)/2) / (2^((k-1)^2/2) * sqrt(k) * (Pi*n)^((k-1)/2)). - Vaclav Kotesovec, Oct 28 2019
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
0, 1, 3, 7, 15, 31, ...
0, 1, 7, 31, 115, 391, ...
0, 1, 19, 175, 1255, 8071, ...
0, 1, 51, 991, 13671, 161671, ...
MATHEMATICA
T[n_, k_] := Sum[(-1)^(n-i) * Binomial[n, i] * Sum[Binomial[i, j]^k, {j, 0, i}], {i, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 06 2021 *)
Constant term in the expansion of (1 + x + y + z + 1/x + 1/y + 1/z + x*y + y*z + z*x + 1/(x*y) + 1/(y*z) + 1/(z*x) + x*y*z + 1/(x*y*z))^n.
+10
7
1, 1, 15, 115, 1255, 13671, 160461, 1936425, 24071895, 305313415, 3939158905, 51521082405, 681635916325, 9105864515125, 122657982366375, 1664151758259915, 22720725637684215, 311933068664333175, 4303704125389134825, 59640225721889127525, 829774531966386480705
FORMULA
a(n) = Sum_{i=0..n} (-1)^(n-i)*binomial(n,i)*Sum_{j=0..i} binomial(i,j)^4.
Recurrence: n^3*a(n) = (2*n - 1)^3*a(n-1) + (n-1)*(94*n^2 - 188*n + 93)*a(n-2) + 80*(n-2)*(n-1)*(2*n - 3)*a(n-3) + 75*(n-3)*(n-2)*(n-1)*a(n-4).
a(n) ~ 15^(n + 3/2) / (2^(11/2) * Pi^(3/2) * n^(3/2)). (End)
PROG
(PARI) {a(n) = polcoef(polcoef(polcoef((-1+(1+x)*(1+y)*(1+z)+(1+1/x)*(1+1/y)*(1+1/z))^n, 0), 0), 0)}
(PARI) {a(n) = sum(i=0, n, (-1)^(n-i)*binomial(n, i)*sum(j=0, i, binomial(i, j)^4))}
CROSSREFS
Sum_{i=0..n} (-1)^(n-i)*binomial(n,i)*Sum_{j=0..i} binomial(i,j)^m: A002426 (m=2), A172634 (m=3), this sequence (m=4), A328750 (m=5).
Triangle: Newton expansion of C(n,m)^3, read by rows.
+10
4
1, 0, 1, 0, 6, 1, 0, 6, 24, 1, 0, 0, 114, 60, 1, 0, 0, 180, 690, 120, 1, 0, 0, 90, 2940, 2640, 210, 1, 0, 0, 0, 5670, 21840, 7770, 336, 1, 0, 0, 0, 5040, 87570, 107520, 19236, 504, 1, 0, 0, 0, 1680, 189000, 735210, 407400, 42084, 720, 1, 0, 0, 0, 0, 224700, 2835756, 4280850, 1284360, 83880, 990, 1
COMMENTS
Triangle here T_3(n,m) is such that C(n,m)^3 = Sum_{j=0..n} C(n,j)*T_3(j,m).
Equivalently, lower triangular matrix T_3 such that
T_3(n,m) = 0 for n < m and for 3*m < n. In fact:
C(x,m)^q and C(x,m), with m nonnegative and q positive integer, are polynomial in x of degree m*q and m respectively, and C(x,m) is a divisor of C(x,m)^q.
Therefore the Newton series will give C(x,m)^q = T_q(m,m)*C(x,m) + T_q(m+1,m)*C(x,m+1) + ... + T_q(q*m,m)*C(x,q*m), where T_q(n,m) is the n-th forward finite difference of C(x,m)^q at x = 0.
Example:
C(x,2)^3 = x^3*(x-1)^3 / 8 = 1*C(x,2) + 24*C(x,3) + 114*C(x,4) + 180*C(x,5) + 90*C(x,6);
C(5,2)^3 = C(5,3)^3 = 1000 = 1*C(5,2) + 24*C(5,3) + 114*C(5,4) + 180*C(5,5) = 1*C(5,3) + 60*C(5,4) + 690*C(5,5).
So we get the expansion of the 3rd power of the binomial coefficient in terms of the binomial coefficients on the same row.
T_1 is the unitary matrix,
T_3 is this sequence,
FORMULA
T_3(n,m) = Sum_{j=0..n} (-1)^(n-j)*C(n,j)*C(j,m)^3.
Also, let S(r,s)(n,m) denote the Generalized Stirling2 numbers as defined in the link above,then T_3(n,m) = n! / (m!)^3 * S(m,m)(3,n).
EXAMPLE
Triangle starts:
n\m [0] [1] [2] [3] [4] [5] [6] [7] [8]
[0] 1;
[1] 0, 1;
[2] 0, 6, 1;
[3] 0, 6, 24, 1;
[4] 0, 0, 114, 60, 1;
[5] 0, 0, 180, 690, 120, 1;
[6] 0, 0, 90, 2940, 2640, 210, 1;
[7] 0, 0, 0, 5670, 21840, 7770, 336, 1;
[8] 0, 0, 0, 5040, 87570, 107520, 19236, 504, 1;
[9] ...
MATHEMATICA
T3[n_, m_] := Sum[(-1)^(n - j) * Binomial[n, j] * Binomial[j, m]^3, {j, 0, n}]; Table[T3[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Oct 01 2015 *)
PROG
(MuPAD)
// as a function
T_3:=(n, m)->_plus((-1)^(n-j)*binomial(n, j)*binomial(j, m)^3 $ j=0..n):
// as a matrix h x h
_P:=h->matrix([[binomial(n, m) $m=0..h]$n=0..h]):
_P_3:=h->matrix([[binomial(n, m)^3 $m=0..h]$n=0..h]):
_T_3:=h->_P(h)^-1*_P_3(h):
(PARI) T_3(nmax) = {for(n=0, nmax, for(m=0, n, print1(sum(j=0, n, (-1)^(n-j)*binomial(n, j)*binomial(j, m)^3), ", ")); print())} \\ Colin Barker, Oct 01 2015
(Magma) [&+[(-1)^(n-j)*Binomial(n, j)*Binomial(j, m)^3: j in [0..n]]: m in [0..n], n in [0..10]]; // Bruno Berselli, Oct 01 2015
(PARI) t3(n, m) = sum(j=0, n, (-1)^((n-j)%2)* binomial(n, j)*binomial(j, m)^3);
concat(vector(11, n, vector(n, k, t3(n-1, k-1)))) \\ Gheorghe Coserea, Jul 14 2016
CROSSREFS
Row sums are A172634, the inverse binomial transform of the Franel numbers ( A000172).
Second diagonal (T_3(n+1,n)) is A007531 (n+2).
Number of 3 X n 0..2 matrices with row sums n and column sums 3 up to permutations of rows.
+10
4
1, 1, 2, 6, 30, 166, 981, 5937, 36646, 229350, 1451757, 9274057, 59699729, 386798777, 2520034050, 16497343046, 108454221206, 715629888822, 4737625385061, 31456633327905, 209418369288865, 1397521222483385, 9346484009527370, 62632803958053870, 420481623373564025
COMMENTS
Also, the number of 3 X n {-1,0,1} matrices with all rows and columns summing to zero up to permutations of rows.
FORMULA
a(n) = (5 + Sum_{i=0..n} Sum_{j=0..i} (-1)^(n-i)*binomial(n, i)*binomial(i, j)^3)/6.
EXAMPLE
The a(2) = 2 matrices are:
[1 1] [2 0]
[1 1] [0 2]
[1 1] [1 1]
The a(3) = 6 matrices are:
[1 1 1] [2 1 0] [2 0 1] [1 2 0] [2 1 0] [2 0 1]
[1 1 1] [0 1 2] [0 2 0] [1 0 2] [1 0 2] [1 2 0]
[1 1 1] [1 1 1] [1 1 1] [1 1 1] [0 2 1] [0 1 2]
PROG
(PARI) a(n)={(5+sum(i=0, n, sum(j=0, i, (-1)^(n-i)*binomial(n, i)*binomial(i, j)^3)))/6}
Number of n X 3 0..2 matrices with row sums 3 and column sums n up to permutations of rows.
+10
4
1, 1, 4, 6, 12, 18, 30, 42, 63, 85, 118, 154, 204, 258, 330, 408, 507, 615, 748, 892, 1066, 1254, 1476, 1716, 1995, 2295, 2640, 3010, 3430, 3880, 4386, 4926, 5529, 6171, 6882, 7638, 8470, 9352, 10318, 11340, 12453, 13629, 14904, 16248, 17700, 19228, 20872, 22600, 24453, 26397, 28476
COMMENTS
Also, the number of n X 3 {-1,0,1} matrices with all rows and columns summing to zero up to permutations of rows.
FORMULA
G.f.: (2/(1 - x^3) - 1)/((1 - x)*(1 - x^2)^3).
G.f.: (1 - x + x^2)/((1 - x)^5*(1 + x)^2*(1 + x + x^2)).
EXAMPLE
The a(2) = 4 matrices are:
[1 1 1] [2 1 0] [2 0 1] [1 2 0]
[1 1 1] [0 1 2] [0 2 0] [1 0 2]
The a(3) = 6 matrices are:
[1 1 1] [2 1 0] [2 0 1] [1 2 0] [2 1 0] [2 0 1]
[1 1 1] [0 1 2] [0 2 0] [1 0 2] [1 0 2] [1 2 0]
[1 1 1] [1 1 1] [1 1 1] [1 1 1] [0 2 1] [0 1 2]
PROG
(PARI) Vec((1 - x + x^2)/((1 - x)^5*(1 + x)^2*(1 + x + x^2)) + O(x^51))
Search completed in 0.009 seconds
|