[go: up one dir, main page]

login
Search: a172634 -id:a172634
     Sort: relevance | references | number | modified | created      Format: long | short | data
Duplicate of A172634.
+20
1
1, 1, 7, 31, 175, 991, 5881, 35617, 219871, 1376095, 8710537, 55644337, 358198369, 2320792657, 15120204295, 98984058271, 650725327231, 4293779332927, 28425752310361, 188739799967425, 1256510215733185
OFFSET
0,3
KEYWORD
dead
STATUS
approved
Array read by antidiagonals: T(n,k) is the number of {-1,0,1} n X k matrices with all rows and columns summing to zero.
+10
13
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 7, 7, 1, 1, 1, 1, 19, 31, 19, 1, 1, 1, 1, 51, 175, 175, 51, 1, 1, 1, 1, 141, 991, 2371, 991, 141, 1, 1, 1, 1, 393, 5881, 32611, 32611, 5881, 393, 1, 1, 1, 1, 1107, 35617, 481381, 1084851, 481381, 35617, 1107, 1, 1
OFFSET
0,13
COMMENTS
Equivalently, the number of n X k 0..2 arrays with row sums k and column sums n.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..350 (first 26 antidiagonals)
FORMULA
T(n,k) = T(k,n).
EXAMPLE
Array begins:
====================================================================
n\k | 0 1 2 3 4 5 6 7
----|---------------------------------------------------------------
0 | 1 1 1 1 1 1 1 1 ...
1 | 1 1 1 1 1 1 1 1 ...
2 | 1 1 3 7 19 51 141 393 ...
3 | 1 1 7 31 175 991 5881 35617 ...
4 | 1 1 19 175 2371 32611 481381 7343449 ...
5 | 1 1 51 991 32611 1084851 39612501 1509893001 ...
6 | 1 1 141 5881 481381 39612501 3680774301 360255871641 ...
7 | 1 1 393 35617 7343449 1509893001 360255871641 ...
...
The T(3,2) = 7 matrices are:
[0 0] [ 0 0] [ 0 0] [ 1 -1] [-1 1] [ 1 -1] [-1 1]
[0 0] [ 1 -1] [-1 1] [ 0 0] [ 0 0] [-1 1] [ 1 -1]
[0 0] [-1 1] [ 1 -1] [-1 1] [ 1 -1] [ 0 0] [ 0 0]
CROSSREFS
Main diagonal is A172645.
Cf. A008300, A333901, A376935, A377063 (up to row permutations).
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, May 09 2020
STATUS
approved
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) is Sum_{i=0..n} (-1)^(n-i)*binomial(n,i)*Sum_{j=0..i} binomial(i,j)^k.
+10
8
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 1, 0, 1, 1, 7, 7, 1, 0, 1, 1, 15, 31, 19, 1, 0, 1, 1, 31, 115, 175, 51, 1, 0, 1, 1, 63, 391, 1255, 991, 141, 1, 0, 1, 1, 127, 1267, 8071, 13671, 5881, 393, 1, 0, 1, 1, 255, 3991, 49399, 161671, 160461, 35617, 1107, 1, 0
OFFSET
0,13
COMMENTS
T(n,k) is the constant term in the expansion of (-1 + Product_{j=1..k-1} (1 + x_j) + Product_{j=1..k-1} (1 + 1/x_j))^n for k > 0.
For fixed k > 0, T(n,k) ~ (2^k - 1)^(n + (k-1)/2) / (2^((k-1)^2/2) * sqrt(k) * (Pi*n)^((k-1)/2)). - Vaclav Kotesovec, Oct 28 2019
LINKS
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
0, 1, 3, 7, 15, 31, ...
0, 1, 7, 31, 115, 391, ...
0, 1, 19, 175, 1255, 8071, ...
0, 1, 51, 991, 13671, 161671, ...
MATHEMATICA
T[n_, k_] := Sum[(-1)^(n-i) * Binomial[n, i] * Sum[Binomial[i, j]^k, {j, 0, i}], {i, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 06 2021 *)
CROSSREFS
Columns k=0..5 give A019590(n+1), A000012, A002426, A172634, A328725, A328750.
Main diagonal gives A328811.
T(n,n+1) gives A328813.
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Oct 27 2019
STATUS
approved
Constant term in the expansion of (1 + x + y + z + 1/x + 1/y + 1/z + x*y + y*z + z*x + 1/(x*y) + 1/(y*z) + 1/(z*x) + x*y*z + 1/(x*y*z))^n.
+10
7
1, 1, 15, 115, 1255, 13671, 160461, 1936425, 24071895, 305313415, 3939158905, 51521082405, 681635916325, 9105864515125, 122657982366375, 1664151758259915, 22720725637684215, 311933068664333175, 4303704125389134825, 59640225721889127525, 829774531966386480705
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{i=0..n} (-1)^(n-i)*binomial(n,i)*Sum_{j=0..i} binomial(i,j)^4.
From Vaclav Kotesovec, Oct 28 2019: (Start)
Recurrence: n^3*a(n) = (2*n - 1)^3*a(n-1) + (n-1)*(94*n^2 - 188*n + 93)*a(n-2) + 80*(n-2)*(n-1)*(2*n - 3)*a(n-3) + 75*(n-3)*(n-2)*(n-1)*a(n-4).
a(n) ~ 15^(n + 3/2) / (2^(11/2) * Pi^(3/2) * n^(3/2)). (End)
PROG
(PARI) {a(n) = polcoef(polcoef(polcoef((-1+(1+x)*(1+y)*(1+z)+(1+1/x)*(1+1/y)*(1+1/z))^n, 0), 0), 0)}
(PARI) {a(n) = sum(i=0, n, (-1)^(n-i)*binomial(n, i)*sum(j=0, i, binomial(i, j)^4))}
CROSSREFS
Sum_{i=0..n} (-1)^(n-i)*binomial(n,i)*Sum_{j=0..i} binomial(i,j)^m: A002426 (m=2), A172634 (m=3), this sequence (m=4), A328750 (m=5).
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 26 2019
STATUS
approved
Triangle: Newton expansion of C(n,m)^3, read by rows.
+10
4
1, 0, 1, 0, 6, 1, 0, 6, 24, 1, 0, 0, 114, 60, 1, 0, 0, 180, 690, 120, 1, 0, 0, 90, 2940, 2640, 210, 1, 0, 0, 0, 5670, 21840, 7770, 336, 1, 0, 0, 0, 5040, 87570, 107520, 19236, 504, 1, 0, 0, 0, 1680, 189000, 735210, 407400, 42084, 720, 1, 0, 0, 0, 0, 224700, 2835756, 4280850, 1284360, 83880, 990, 1
OFFSET
0,5
COMMENTS
Triangle here T_3(n,m) is such that C(n,m)^3 = Sum_{j=0..n} C(n,j)*T_3(j,m).
Equivalently, lower triangular matrix T_3 such that
|| C(n,m)^3 || = A181583 = P * T_3 = A007318 * T_3.
T_3(n,m) = 0 for n < m and for 3*m < n. In fact:
C(x,m)^q and C(x,m), with m nonnegative and q positive integer, are polynomial in x of degree m*q and m respectively, and C(x,m) is a divisor of C(x,m)^q.
Therefore the Newton series will give C(x,m)^q = T_q(m,m)*C(x,m) + T_q(m+1,m)*C(x,m+1) + ... + T_q(q*m,m)*C(x,q*m), where T_q(n,m) is the n-th forward finite difference of C(x,m)^q at x = 0.
Example:
C(x,2)^3 = x^3*(x-1)^3 / 8 = 1*C(x,2) + 24*C(x,3) + 114*C(x,4) + 180*C(x,5) + 90*C(x,6);
C(5,2)^3 = C(5,3)^3 = 1000 = 1*C(5,2) + 24*C(5,3) + 114*C(5,4) + 180*C(5,5) = 1*C(5,3) + 60*C(5,4) + 690*C(5,5).
So we get the expansion of the 3rd power of the binomial coefficient in terms of the binomial coefficients on the same row.
T_1 is the unitary matrix,
T_2 is the transpose of A109983,
T_3 is this sequence,
T_4, T_5 are A262705, A262706.
LINKS
Gheorghe Coserea, Rows n = 0..200, flattened
P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
FORMULA
T_3(n,m) = Sum_{j=0..n} (-1)^(n-j)*C(n,j)*C(j,m)^3.
Also, let S(r,s)(n,m) denote the Generalized Stirling2 numbers as defined in the link above,then T_3(n,m) = n! / (m!)^3 * S(m,m)(3,n).
EXAMPLE
Triangle starts:
n\m [0] [1] [2] [3] [4] [5] [6] [7] [8]
[0] 1;
[1] 0, 1;
[2] 0, 6, 1;
[3] 0, 6, 24, 1;
[4] 0, 0, 114, 60, 1;
[5] 0, 0, 180, 690, 120, 1;
[6] 0, 0, 90, 2940, 2640, 210, 1;
[7] 0, 0, 0, 5670, 21840, 7770, 336, 1;
[8] 0, 0, 0, 5040, 87570, 107520, 19236, 504, 1;
[9] ...
MATHEMATICA
T3[n_, m_] := Sum[(-1)^(n - j) * Binomial[n, j] * Binomial[j, m]^3, {j, 0, n}]; Table[T3[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Oct 01 2015 *)
PROG
(MuPAD)
// as a function
T_3:=(n, m)->_plus((-1)^(n-j)*binomial(n, j)*binomial(j, m)^3 $ j=0..n):
// as a matrix h x h
_P:=h->matrix([[binomial(n, m) $m=0..h]$n=0..h]):
_P_3:=h->matrix([[binomial(n, m)^3 $m=0..h]$n=0..h]):
_T_3:=h->_P(h)^-1*_P_3(h):
(PARI) T_3(nmax) = {for(n=0, nmax, for(m=0, n, print1(sum(j=0, n, (-1)^(n-j)*binomial(n, j)*binomial(j, m)^3), ", ")); print())} \\ Colin Barker, Oct 01 2015
(Magma) [&+[(-1)^(n-j)*Binomial(n, j)*Binomial(j, m)^3: j in [0..n]]: m in [0..n], n in [0..10]]; // Bruno Berselli, Oct 01 2015
(PARI) t3(n, m) = sum(j=0, n, (-1)^((n-j)%2)* binomial(n, j)*binomial(j, m)^3);
concat(vector(11, n, vector(n, k, t3(n-1, k-1)))) \\ Gheorghe Coserea, Jul 14 2016
CROSSREFS
Row sums are A172634, the inverse binomial transform of the Franel numbers (A000172).
Column sums are the A126086, per the comment given thereto by Brendan McKay.
Second diagonal (T_3(n+1,n)) is A007531 (n+2).
Column T_3(n,2) is A122193(3,n).
Cf. A109983 (transpose of), A262705, A262706.
KEYWORD
nonn,tabl,easy
AUTHOR
Giuliano Cabrele, Sep 27 2015
STATUS
approved
Number of 3 X n 0..2 matrices with row sums n and column sums 3 up to permutations of rows.
+10
4
1, 1, 2, 6, 30, 166, 981, 5937, 36646, 229350, 1451757, 9274057, 59699729, 386798777, 2520034050, 16497343046, 108454221206, 715629888822, 4737625385061, 31456633327905, 209418369288865, 1397521222483385, 9346484009527370, 62632803958053870, 420481623373564025
OFFSET
0,3
COMMENTS
Also, the number of 3 X n {-1,0,1} matrices with all rows and columns summing to zero up to permutations of rows.
LINKS
FORMULA
a(n) = (A172634(n) - 1)/6 + 1.
a(n) = (5 + Sum_{i=0..n} Sum_{j=0..i} (-1)^(n-i)*binomial(n, i)*binomial(i, j)^3)/6.
EXAMPLE
The a(2) = 2 matrices are:
[1 1] [2 0]
[1 1] [0 2]
[1 1] [1 1]
The a(3) = 6 matrices are:
[1 1 1] [2 1 0] [2 0 1] [1 2 0] [2 1 0] [2 0 1]
[1 1 1] [0 1 2] [0 2 0] [1 0 2] [1 0 2] [1 2 0]
[1 1 1] [1 1 1] [1 1 1] [1 1 1] [0 2 1] [0 1 2]
PROG
(PARI) a(n)={(5+sum(i=0, n, sum(j=0, i, (-1)^(n-i)*binomial(n, i)*binomial(i, j)^3)))/6}
CROSSREFS
Row n=3 of A377063.
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Oct 15 2024
STATUS
approved
Number of n X 3 0..2 matrices with row sums 3 and column sums n up to permutations of rows.
+10
4
1, 1, 4, 6, 12, 18, 30, 42, 63, 85, 118, 154, 204, 258, 330, 408, 507, 615, 748, 892, 1066, 1254, 1476, 1716, 1995, 2295, 2640, 3010, 3430, 3880, 4386, 4926, 5529, 6171, 6882, 7638, 8470, 9352, 10318, 11340, 12453, 13629, 14904, 16248, 17700, 19228, 20872, 22600, 24453, 26397, 28476
OFFSET
0,3
COMMENTS
Also, the number of n X 3 {-1,0,1} matrices with all rows and columns summing to zero up to permutations of rows.
FORMULA
G.f.: (2/(1 - x^3) - 1)/((1 - x)*(1 - x^2)^3).
G.f.: (1 - x + x^2)/((1 - x)^5*(1 + x)^2*(1 + x + x^2)).
EXAMPLE
The a(2) = 4 matrices are:
[1 1 1] [2 1 0] [2 0 1] [1 2 0]
[1 1 1] [0 1 2] [0 2 0] [1 0 2]
The a(3) = 6 matrices are:
[1 1 1] [2 1 0] [2 0 1] [1 2 0] [2 1 0] [2 0 1]
[1 1 1] [0 1 2] [0 2 0] [1 0 2] [1 0 2] [1 2 0]
[1 1 1] [1 1 1] [1 1 1] [1 1 1] [0 2 1] [0 1 2]
PROG
(PARI) Vec((1 - x + x^2)/((1 - x)^5*(1 + x)^2*(1 + x + x^2)) + O(x^51))
CROSSREFS
Column k=3 of A377063.
KEYWORD
nonn,easy
AUTHOR
Andrew Howroyd, Oct 15 2024
STATUS
approved

Search completed in 0.009 seconds