[go: up one dir, main page]

login
Search: a169958 -id:a169958
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = binomial(3n,n).
(Formerly M2995)
+10
113
1, 3, 15, 84, 495, 3003, 18564, 116280, 735471, 4686825, 30045015, 193536720, 1251677700, 8122425444, 52860229080, 344867425584, 2254848913647, 14771069086725, 96926348578605, 636983969321700, 4191844505805495, 27619435402363035
OFFSET
0,2
COMMENTS
Number of paths in Z X Z starting at (0,0) and ending at (3n,0) using steps in {(1,1),(1,-2)}.
Number of even trees with 2n edges and one distinguished vertex. Even trees are rooted plane trees where every vertex (including root) has even degree.
Hankel transform is 3^n*A051255(n), where A051255 is the Hankel transform of C(3n,n)/(2n+1). - Paul Barry, Jan 21 2007
a(n) is the number of stack polyominoes inscribed in an (n+1) X (n+1) box. Equivalently, a(n) is the number of unimodal compositions with n+1 parts in which the maximum value of the parts is n+1. For instance, for n = 2, we have the following compositions: (3,3,3), (2,3,3), (1,3,3), (3,3,1), (3,3,2), (2,2,3), (1,2,3), (2,3,1), (1,1,3), (1,3,1), (3,1,1), (2,3,2), (1,3,2), (3,2,1), (3,2,2). - Emanuele Munarini, Apr 07 2011
Conjecture: a(n)==3 (mod n^3) iff n is an odd prime. - Gary Detlefs, Mar 23 2013. The congruence a(p) = binomial(3*p,p) = 3 (mod p^3) for odd prime p is a known generalization of Wolstenholme's theorem. See Mestrovic, Section 6, equation 35. - Peter Bala, Dec 28 2014
In general, C(k*n,n) = C(k*n-1,n-1)*C((k*n)^2,2)/(3*n*C(k*n+1,3)), n>0. - Gary Detlefs, Jan 02 2014
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000[Terms 0 to 100 computed by T. D. Noe; terms 101 to 1000 by G. C. Greubel, Jan 14 2017]
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Paul Barry, On the Central Coefficients of Riordan Matrices, Journal of Integer Sequences, 16 (2013), Article 13.5.1.
Naiomi Tuere Cameron, Random walks, trees and extensions of Riordan group techniques, Dissertation, Howard University, 2002.
Maciej Dziemianczuk, On Directed Lattice Paths With Additional Vertical Steps, arXiv:1410.5747 [math.CO], 2014.
Vaclav Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 436.
Yaping Liu, On the Recursiveness of Pascal Sequences, Global J. of Pure and Appl. Math. (2022) Vol. 18, No. 1, 71-80.
Mathematics Stack Exchange, Ordinary generating function for binom(3n,n), Nov 2013.
Wojciech Młotkowski and Karol A. Penson, Probability distributions with binomial moments, Infinite Dimensional Analysis, Quantum Probability and Related Topics, Vol. 17, No. 2 (2014), 1450014; arXiv preprint, arXiv:1309.0595 [math.PR], 2013.
Khodabakhsh Hessami Pilehrood and Tatiana Hessami Pilehrood, Jacobi Polynomials and Congruences Involving Some Higher-Order Catalan Numbers and Binomial Coefficients, Journal of Integer Sequences, Vol. 18 (2015), Article 15.11.7.
Yash Puri and Thomas Ward, Arithmetic and growth of periodic orbits, Journal of Integer Sequences, Vol. 4 (2001), Article 01.2.1.
FORMULA
The g.f. R[ z_ ] below (in the Mathematica field) was found by Kurt Persson (kurt(AT)math.chalmers.se) and communicated by Einar Steingrimsson (einar(AT)math.chalmers.se).
Using Stirling's formula in A000142, it is easy to get the asymptotic expression a(n) ~ (1/2) * (27/4)^n / sqrt(Pi*n / 3). - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 07 2001
a(n) = Sum_{k=0..n} C(n, k)*C(2n, k). - Paul Barry, May 15 2003
G.f.: 1/(1-3zg^2), where g=g(z) is given by g=1+zg^3, g(0)=1, i.e., (in Maple notation) g := 2*sin(arcsin(3*sqrt(3*z)/2)/3)/sqrt(3*z). - Emeric Deutsch, May 22 2003
G.f.: x*B'(x)/B(x), where B(x)+1 is the g.f. for A001764. - Vladimir Kruchinin, Oct 02 2015
a(n) ~ (1/2)*3^(1/2)*Pi^(-1/2)*n^(-1/2)*2^(-2*n)*3^(3*n)*(1 - 7/72*n^-1 + 49/10368*n^-2 + 6425/2239488*n^-3 - ...). - Joe Keane (jgk(AT)jgk.org), Nov 07 2003
a(n) = A006480(n)/A000984(n). - Lior Manor, May 04 2004
a(n) = Sum_{i_1=0..n, i_2=0..n} binomial(n, i_1)*binomial(n, i_2)*binomial(n, i_1+i_2). - Benoit Cloitre, Oct 14 2004
a(n) = Sum_{k=0..n} A109971(k)*3^k; a(0)=1, a(n) = Sum_{k=0..n} 3^k*C(3n-k,n-k)2k/(3n-k), n>0. - Paul Barry, Jan 21 2007
a(n) = A085478(2n,n). - Philippe Deléham, Sep 17 2009
E.g.f.: 2F2(1/3,2/3;1/2,1;27*x/4), where F(a1,a2;b1,b2;z) is a hypergeometric series. - Emanuele Munarini, Apr 12 2011
a(n) = Sum_{k=0..n} binomial(2*n+k-1,k). - Arkadiusz Wesolowski, Apr 02 2012
G.f.: cos((1/3)*asin(sqrt(27x/4)))/sqrt(1-27x/4). - Tom Copeland, May 24 2012
G.f.: A(x) = 1 + 6*x/(G(0)-6*x) where G(k) = (2*k+2)*(2*k+1) + 3*x*(3*k+1)*(3*k+2) - 6*x*(k+1)*(2*k+1)*(3*k+4)*(3*k+5)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jun 30 2012
D-finite with recurrence: 2*n*(2*n-1)*a(n) - 3*(3*n-1)*(3*n-2)*a(n-1) = 0. - R. J. Mathar, Feb 05 2013
a(n) = (2n+1)*A001764(n). - Johannes W. Meijer, Aug 22 2013
a(n) = C(3*n-1,n-1)*C(9*n^2,2)/(3*n*C(3*n+1,3)), n>0. - Gary Detlefs, Jan 02 2014
a(n) = [x^n] 1/(1 - x)^(2*n+1). - Ilya Gutkovskiy, Oct 03 2017
a(n) = hypergeom([-2*n, -n], [1], 1). - Peter Luschny, Mar 19 2018
a(n) = Sum_{k=0..n} binomial(n, k) * binomial(2*n, n-k) = row sums of A110608. - Michael Somos, Jan 30 2019
0 = a(n)*(-3188646*a(n+2) +7322076*a(n+3) -2805111*a(n+4) +273585*a(n+5)) +a(n+1)*(+413343*a(n+2) -1252017*a(n+3) +538344*a(n+4) -55940*a(n+5)) +a(n+2)*(-4131*a(n+2) +38733*a(n+3) -21628*a(n+4) +2528*a(n+5)) for all n in Z. - Michael Somos, Jan 30 2019
Sum_{n>=1} 1/a(n) = A229705. - Amiram Eldar, Nov 14 2020
From Peter Bala, Feb 20 2022: (Start)
The o.g.f. A(x) satisfies the differential equation (4*x - 27*x^2)*A''(x) + (2 - 54*x)*A'(x) - 6*A(x) = 0, with A(0) = 1 and A'(0) = 3.
Algebraic equation: (1 - A(x))*(1 + 2*A(x))^2 + 27*x*A(x)^3 = 0.
Sum_{n >= 1} a(n)*( x*(2*x + 3)^2/(27*(1 + x)^3) )^n = x. (End)
From Vaclav Kotesovec, May 13 2022: (Start)
Sum_{n>=0} a(n) / 3^(2*n) = 2*cos(Pi/9).
Sum_{n>=0} a(n) / (27/2)^n = (1 + sqrt(3))/2.
Sum_{n>=0} a(n) / 3^(3*n) = 2*cos(Pi/18) / sqrt(3).
In general, for k > 27/4, Sum_{n>=0} a(n)/k^n = 2*cos(arccos(1 - 27/(2*k))/6) / sqrt(4 - 27/k). (End)
G.f.: hypergeom([1/3, 2/3], [1/2], 27*z/4), the Gauss hypergeometric function 2F1. - Karol A. Penson, Dec 12 2023
EXAMPLE
G.f. = 1 + 3*x + 15*x^2 + 84*x^3 + 495*x^4 + 3003*x^5 + 18564*x^6 + ... - Michael Somos, Jan 30 2019
MAPLE
A005809:=n->binomial(3*n, n); seq(A005809(n), n=0..40); # Wesley Ivan Hurt, Mar 21 2014
MATHEMATICA
R[ z_ ] := ((2-18*z + 27*z^2 + 3^(3/2)*z^(3/2)*(27*z-4)^(1/2))/2)^(1/3); f[ z_ ] := ( (R[ z ])^3 + (1-3*z)*(R[ z ])^2 + (1-6*z)*R[ z ] )/( (R[ z ])^4 + (1-6*z)*(R[ z ])^2 + (6*z-1)^2 )
Table[Binomial[3*n, n], {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Mar 03 2011 *)
PROG
(Sage) [binomial(3*n, n) for n in range(0, 22)] # Zerinvary Lajos, Dec 16 2009
(Maxima) makelist(binomial(3*n, n), n, 0, 100); /* Emanuele Munarini, Apr 07 2011 */
(Magma) [ Binomial(3*n, n): n in [0..150] ]; // Vincenzo Librandi, Apr 21 2011
(Haskell)
a005809 n = a007318 (3*n) n -- Reinhard Zumkeller, May 06 2012
(PARI) a(n)=binomial(3*n, n) \\ Charles R Greathouse IV, Nov 20 2012
(Maxima)
B(x):=(2/sqrt(3*x))*sin((1/3)*asin(sqrt(27*x/4)))-1;
taylor(x*diff(B(x), x)/B(x), x, 0, 10); /* Vladimir Kruchinin, Oct 02 2015 */
CROSSREFS
binomial(k*n,n): A000984 (k = 2), A005810 (k = 4), A001449 (k = 5), A004355 (k = 6), A004368 (k = 7), A004381 (k = 8), A169958 - A169961 (k = 9 thru 12).
KEYWORD
nonn,easy,nice
STATUS
approved
a(n) = binomial(4n,n).
(Formerly M3625)
+10
50
1, 4, 28, 220, 1820, 15504, 134596, 1184040, 10518300, 94143280, 847660528, 7669339132, 69668534468, 635013559600, 5804731963800, 53194089192720, 488526937079580, 4495151581425648, 41432089765583440, 382460951663844400
OFFSET
0,2
COMMENTS
Start off with 0 balls in a box. Find the number of ways you can throw 3 balls back out. Then continue to throw 4 balls into the box after each stage. (I.e., the first stage is 0. Then at the next stage there are 4 ways to throw 3 balls back out.) - Ruppi Rana (ruppirana007(AT)hotmail.com), Mar 03 2004
Central coefficients of A094527. - Paul Barry, Mar 08 2011
This is the case m = 2n in Catalan's formula (2m)!*(2n)!/(m!*(m+n)!*n!) - see Umberto Scarpis in References. - Bruno Berselli, Apr 27 2012
A generating function in terms of a (labyrinthine) solution to a depressed quartic equation is given in the Copeland link for signed A005810. - Tom Copeland, Oct 10 2012
Conjecture: a(n) == 4 (mod n^3) iff n is prime. - Gary Detlefs, Apr 03 2013
For prime p, the congruence a(p) = binomial(4*p,p) = 4 (mod p^3) is a known generalization of Wolstenholme's theorem. See Mestrovic, Section 6, equation 35. - Peter Bala, Dec 28 2014
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
Umberto Scarpis, Sui numeri primi e sui problemi dell'analisi indeterminata in Questioni riguardanti le matematiche elementari, Nicola Zanichelli Editore (1924-1927, third Edition), page 11.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..1000 (terms 0..100 from T. D. Noe, terms 101..213 from Muniru A Asiru)
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Ruppi Rana, Title? [Broken link]
FORMULA
a(n) is asymptotic to c*(256/27)^n/sqrt(n) with c = sqrt(2 / (3 Pi)) = 0.460658865961780639... - Benoit Cloitre, Jan 26 2003; corrected by Charles R Greathouse IV, Dec 14 2006
a(n) = Sum_{k=0..2n} binomial(2n,k)*binomial(2n,k-n). - Paul Barry, Mar 08 2011
G.f.: g/(4-3*g) where g = 1+x*g^4 is the g.f. of A002293. - Mark van Hoeij, Nov 11 2011
D-finite with recurrence: 3*n*(3*n-1)*(3*n-2)*a(n) - 8*(4*n-3)*(2*n-1)*(4*n-1)*a(n-1) = 0. - R. J. Mathar, Dec 02 2012
a(n) = binomial(4*n,n-1)*(3*n+1)/n. - Gary Detlefs, Apr 03 2013
a(n) = C(4*n-1,n-1)*C(16*n^2,2)/(3*n*C(4*n+1,3)), n>0. - Gary Detlefs, Jan 02 2014
a(n) = Sum_{i,j,k = 0..n} binomial(n,i)*binomial(n,j)*binomial(n,k)* binomial(n,i+j+k). - Peter Bala, Dec 28 2014
a(n) = GegenbauerC(n, -2*n, -1). - Peter Luschny, May 07 2016
From Ilya Gutkovskiy, Nov 22 2016: (Start)
O.g.f.: 3F2(1/4,1/2,3/4; 1/3,2/3; 256*x/27).
E.g.f.: 3F3(1/4,1/2,3/4; 1/3,2/3,1; 256*x/27). (End)
a(n) = hypergeom([-3*n, -1*n], [1], 1). - Peter Luschny, Mar 19 2018
RHS of the identity Sum_{k = 0..2*n} (-1)^(n+k)*binomial(4*n, k)* binomial(4*n, 2*n-k) = binomial(4*n,n). - Peter Bala, Oct 07 2021
From Peter Bala, Feb 20 2022: (Start)
The o.g.f. A(x) satisfies the differential equation
(-256*x^3 + 27*x^2)*A(x)''' + (-1152*x^2 + 54*x)*A(x)'' + (-816*x + 6)*A(x)' - 24*A(x) = 0 with A(0) = 1, A'(0) = 4 and A''(0) = 56.
Algebraic equation: (1 - A(x))*(1 + 3*A(x))^3 + 256*x*A(x)^4 = 0.
Sum_{n >= 1} a(n)*( x*(3*x + 4)^3/(256*(1 + x)^4) )^n = x. (End)
EXAMPLE
G.f. = 1 + 4*x + 28*x^2 + 220*x^3 + 1820*x^4 + 15504*x^5 + 134596*x^6 + ...
MAPLE
seq(binomial(4*n, n), n=0..20); # Muniru A Asiru, Mar 19 2018
MATHEMATICA
Table[Binomial[4n, n], {n, 0, 19}] (* Geoffrey Critzer, Sep 15 2013 *)
PROG
(Magma) [ Binomial(4*n, n): n in [0..100] ]; // Vincenzo Librandi, Apr 13 2011
(Haskell)
a005810 n = a007318 (4*n) n -- Reinhard Zumkeller, Mar 04 2012
(PARI) a(n) = binomial(4*n, n); \\ Altug Alkan, Mar 19 2018
(GAP) List([0..20], n->Binomial(4*n, n)); # Muniru A Asiru, Mar 19 2018
(Python)
from math import comb
def A005810(n): return comb(n<<2, n) # Chai Wah Wu, Aug 01 2023
CROSSREFS
binomial(k*n,n): A000984 (k = 2), A005809 (k = 3), A001449 (k = 5), A004355 (k = 6), A004368 (k = 7), A004381 (k = 8), A169958 - A169961 (k = 9 thru 12).
KEYWORD
nonn,easy
EXTENSIONS
More terms from Henry Bottomley, Oct 06 2000
Corrected by T. D. Noe, Jan 16 2007
STATUS
approved
Binomial coefficients binomial(5n,n).
+10
15
1, 5, 45, 455, 4845, 53130, 593775, 6724520, 76904685, 886163135, 10272278170, 119653565850, 1399358844975, 16421073515280, 193253756909160, 2280012686716080, 26958221130508525
OFFSET
0,2
FORMULA
a(n) = (5*n)!/((4*n)!*(n)!).
a(n) is asymptotic to c*(3125/256)^n/sqrt(n), with c = sqrt(5/(8*Pi)) = 0.44603102903819277863474159... - Benoit Cloitre, Jan 23 2008
a(n) = C(5*n-1,n-1)*C(25*n^2,2)/(3*n*C(5*n+1,3)), n>0. - Gary Detlefs, Jan 02 2014
G.f.: A(x) = x*B'(x)/B(x), where B(x)+1 is g.f. of A002294. - Vladimir Kruchinin, Oct 05 2015
From Ilya Gutkovskiy, Jan 16 2017: (Start)
O.g.f.: 4F3(1/5,2/5,3/5,4/5; 1/4,1/2,3/4; 3125*x/256).
E.g.f.: 4F4(1/5,2/5,3/5,4/5; 1/4,1/2,3/4,1; 3125*x/256). (End)
a(n) = hypergeom([-4*n, -n], [1], 1). - Peter Luschny, Mar 19 2018
From Peter Bala, Feb 20 2022: (Start)
4*n(4*n-1)*(4*n-2)*(4*n-3)*a(n) = 5*(5*n-1)*(5*n-2)*(5*n-3)*(5*n-4)*a(n-1).
The o.g.f. A(x) is algebraic: (1 - A(x))*(1 + 4*A(x))^4 + 3125*x*A(x)^5 = 0.
Sum_{n >= 1} a(n)*( x*(4*x + 5)^4/(3125*(1 + x)^5) )^n = x. (End)
MAPLE
f := n->(5*n)!/((4*n)!*(n)!);
MATHEMATICA
Table[ Binomial[5n, n], {n, 0, 18} ]
PROG
(Magma)[ Binomial(5*n, n): n in [0..100] ]; // Vincenzo Librandi, Apr 13 2011
(Maxima)
B(x):=sum(binomial(5*n, n-1)/n*x^n, n, 1, 30);
taylor(x*diff(B(x), x)/B(x), x, 0, 10); /* Vladimir Kruchinin, Oct 05 2015 */
(PARI) a(n) = binomial(5*n, n) \\ Altug Alkan, Oct 05 2015
CROSSREFS
binomial(k*n,n): A000984 (k = 2), A005809 (k = 3), A005810 (k = 4), A004355 (k = 6), A004368 (k = 7), A004381 (k = 8), A169958 - A169961 (k = 9 thru 12).
KEYWORD
nonn,easy
STATUS
approved
Binomial coefficient C(6n,n).
+10
15
1, 6, 66, 816, 10626, 142506, 1947792, 26978328, 377348994, 5317936260, 75394027566, 1074082795968, 15363284301456, 220495674290430, 3173734438530120, 45795673964460816, 662252084388541314
OFFSET
0,2
COMMENTS
a(n) is asymptotic to c*(46656/3125)^n/sqrt(n), with c = sqrt(3/(5*Pi)) = 0.437019372236831628217354... - Benoit Cloitre, Jan 23 2008
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
FORMULA
a(n) = C(6*n-1,n-1)*C(36*n^2,2)/(3*n*C(6*n+1,3)), n>0. - Gary Detlefs, Jan 02 2014
G.f.: A(x) = x*B'(x)/B(x), where B(x)+1 is g.f. of A002295. - Vladimir Kruchinin, Oct 05 2015
a(n) = GegenbauerC(n, -3*n, -1). - Peter Luschny, May 07 2016
From Ilya Gutkovskiy, Jan 16 2017: (Start)
O.g.f.: 5F4(1/6,1/3,1/2,2/3,5/6; 1/5,2/5,3/5,4/5; 46656*x/3125).
E.g.f.: 5F5(1/6,1/3,1/2,2/3,5/6; 1/5,2/5,3/5,4/5,1; 46656*x/3125). (End)
RHS of identities Sum_{k = 0..n} binomial(3*n, k)*binomial(3*n, n-k) =
Sum_{k = 0..2*n} (-1)^(n+k)*binomial(6*n, k)*binomial(6*n, 2*n-k) = binomial(6*n,n). - Peter Bala, Oct 07 2021
From Peter Bala, Feb 20 2022: (Start)
5*n*(5*n-1)*(5*n-2)*(5*n-3)*(5*n-4)*a(n) = 6*(6*n-1)*(6*n-2)*(6*n-3)(6*n-4)*(6*n-5)*a(n-1).
The o.g.f. A(x) is algebraic: (1 - A(x))*(1 + 5*A(x))^5 + (6^6)*x*A(x)^6 = 0.
Sum_{n >= 1} a(n)*( x*(5*x + 6)^5/(6^6*(1 + x)^6) )^n = x. (End)
MATHEMATICA
Table[Binomial[6 n, n], {n, 0, 16}] (* Michael De Vlieger, Oct 05 2015 *)
PROG
(Magma) [Binomial(6*n, n): n in [0..100]]; // Vincenzo Librandi, Apr 13 2011
(Maxima)
B(x):=sum(binomial(6*n, n-1)/n*x^n, n, 1, 30);
taylor(x*diff(B(x), x)/B(x), x, 0, 10); /* Vladimir Kruchinin, Oct 05 2015 */
(PARI) a(n) = binomial(6*n, n) \\ Altug Alkan, Oct 05 2015
CROSSREFS
binomial(k*n,n): A000984 (k = 2), A005809 (k = 3), A005810 (k = 4), A001449 (k = 5), A004368 (k = 7), A004381 (k = 8), A169958 - A169961 (k = 9 thru 12).
KEYWORD
nonn,easy
STATUS
approved
Binomial coefficient C(7n,n).
+10
12
1, 7, 91, 1330, 20475, 324632, 5245786, 85900584, 1420494075, 23667689815, 396704524216, 6681687099710, 112992892764570, 1917283000904460, 32626924340528840, 556608279578340080, 9516306085765295355, 163011740982048945441
OFFSET
0,2
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
FORMULA
a(n) = C(7*n-1,n-1)*C(49*n^2,2)/(3*n*C(7*n+1,3)), n>0. - Gary Detlefs, Jan 02 2014
G.f.: A(x) = x*B'(x)/B(x), where B(x)+1 is g.f. of A002296. - Vladimir Kruchinin, Oct 05 2015
From Ilya Gutkovskiy, Jan 16 2017: (Start)
O.g.f.: 6F5(1/7,2/7,3/7,4/7,5/7,6/7; 1/6,1/3,1/2,2/3,5/6; 823543*x/46656).
E.g.f.: 6F6(1/7,2/7,3/7,4/7,5/7,6/7; 1/6,1/3,1/2,2/3,5/6,1; 823543*x/46656).
a(n) ~ sqrt(7/3)*7^(7*n)/(2*sqrt(Pi*n)*6^(6*n)). (End)
From Peter Bala, Feb 20 2022: (Start)
The o.g.f. A(x) is algebraic: (1 - A(x))*(1 + 6*A(x))^6 + (7^7)*x*A(x)^7 = 0.
Sum_{n >= 1} a(n)*( x*(6*x + 7)^6/(7^7*(1 + x)^7) )^n = x. (End)
MATHEMATICA
Table[Binomial[7n, n], {n, 0, 20}] (* Harvey P. Dale, Apr 05 2014 *)
PROG
(Maxima)
B(x):=sum(binomial(7*n, n-1)/n*x^n, n, 1, 30);
taylor(x*diff(B(x), x)/B(x), x, 0, 10); /* Vladimir Kruchinin, Oct 05 2015 */
(PARI) a(n) = binomial(7*n, n) \\ Altug Alkan, Oct 05 2015
(Magma) [Binomial(7*n, n): n in [0..20]]; // Vincenzo Librandi, Oct 06 2015
CROSSREFS
binomial(k*n,n): A000984 (k = 2), A005809 (k = 3), A005810 (k = 4), A001449 (k = 5), A004355 (k = 6), A004381 (k = 8), A169958 - A169961 (k = 9 thru 12).
Cf. A002296.
KEYWORD
nonn,easy
STATUS
approved
Binomial coefficient C(8n,n).
+10
12
1, 8, 120, 2024, 35960, 658008, 12271512, 231917400, 4426165368, 85113005120, 1646492110120, 32006008361808, 624668654531480, 12233149001721760, 240260199935164200, 4730523156632595024
OFFSET
0,2
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
FORMULA
a(n) = C(8*n-1,n-1)*C(64*n^2,2)/(3*n*C(8*n+1,3)), n>0. - Gary Detlefs, Jan 02 2014
From Ilya Gutkovskiy, Jan 16 2017: (Start)
O.g.f.: 7F6(1/8,1/4,3/8,1/2,5/8,3/4,7/8; 1/7,2/7,3/7,4/7,5/7,6/7; 16777216*x/823543).
E.g.f.: 7F7(1/8,1/4,3/8,1/2,5/8,3/4,7/8; 1/7,2/7,3/7,4/7,5/7,6/7,1; 16777216*x/823543).
a(n) ~ 2^(24*n+1)/(sqrt(Pi*n)*7^(7*n+1/2)). (End)
From Peter Bala, Feb 20 2022: (Start)
The o.g.f. A(x) is algebraic: (1 - A(x))*(1 + 7*A(x))^7 + (8^8)*x*A(x)^8 = 0.
Sum_{n >= 1} a(n)*( x*(7*x + 8)^7/(8^8*(1 + x)^8) )^n = x. (End)
MATHEMATICA
Table[Binomial[8 n, n], {n, 0, 20}] (* Vincenzo Librandi, Aug 07 2014 *)
PROG
(Magma) [Binomial(8*n, n): n in [0..20]]; // Vincenzo Librandi, Aug 07 2014
(Python)
from math import comb
def A004381(n): return comb(n<<3, n) # Chai Wah Wu, Aug 01 2023
CROSSREFS
binomial(k*n,n): A000984 (k = 2), A005809 (k = 3), A005810 (k = 4), A001449 (k = 5), A004355 (k = 6), A004368 (k = 7), A169958 - A169961 (k = 9 thru 12).
KEYWORD
nonn,easy
STATUS
approved
a(n) = binomial(12*n, n).
+10
10
1, 12, 276, 7140, 194580, 5461512, 156238908, 4529365776, 132601016340, 3911395881900, 116068178638776, 3461014728350400, 103619293824707388, 3112781199432937200, 93780365051563029360, 2832430653037446854640, 85733828145510955528212, 2600022926684976508835280
OFFSET
0,2
LINKS
FORMULA
a(n) = C(12*n-1,n-1)*C(144*n^2,2)/(3*n*C(12*n+1,3)), n>0. - Gary Detlefs, Jan 02 2014
From Bradley Klee, Jul 01 2018 : (Start)
G.f. G(x) and derivatives G^(n)(x)=d^n/dx^n G(x) satisfy a Picard-Fuchs type differential equation, 0=Sum_{m=0..11}(v1_{n}*x^(n+1)-v2_{n}*x^n)*G^(n)(x), with integer coefficient vectors:
v1={479001600, 647647046323200, 99278289544896000, 1290870365178240000, 4245175263164774400, 5313701967430348800, 3083267876011868160, 918801061774295040, 147161631039160320, 12624021804810240, 539424077119488, 8916100448256}
v2={0, 39916800, 14079254112000, 1273481816745600, 11475123393888000, 27687351298068000, 25909403608075680, 11200182937408080, 2427742942653600, 268452344620350, 14265583530550, 285311670611}
G.f.: G(x) = 11F10(m/12;n/11;12^12/11^11*x), m=1..11, n=1..10. (End)
From Vaclav Kotesovec, Jul 15 2018: (Start)
Recurrence: 11*n*(11*n - 10)*(11*n - 9)*(11*n - 8)*(11*n - 7)*(11*n - 6)*(11*n - 5)*(11*n - 4)*(11*n - 3)*(11*n - 2)*(11*n - 1)*a(n) = 41472*(2*n - 1)*(3*n - 2)*(3*n - 1)*(4*n - 3)*(4*n - 1)*(6*n - 5)*(6*n - 1)*(12*n - 11)*(12*n - 7)*(12*n - 5)*(12*n - 1)*a(n-1).
a(n) ~ 2^(24*n + 1/2) * 3^(12*n + 1/2) / (sqrt(Pi*n) * 11^(11*n + 1/2)). (End)
From Peter Bala, Feb 21 2022: (Start)
The o.g.f. A(x) is algebraic: (1 - A(x))*(1 + 11*A(x))^11 + (12^12)*x*A(x)^12 = 0.
Sum_{n >= 1} a(n)*( x*(11*x + 12)^11/(12^12*(1 + x)^12) )^n = x. (End)
MATHEMATICA
Table[Binomial[12 n, n], {n, 0, 20}] (* Vincenzo Librandi, Aug 07 2014 *)
CoefficientList[Series[HypergeometricPFQ[Range[11]/12, Range[10]/11, (12^12)/(11^11)*x], {x, 0, 10}], x] (* Bradley Klee, Jul 01 2018 *)
PROG
(Magma) [Binomial(12*n, n): n in [0..20]]; // Vincenzo Librandi, Aug 07 2014
(PARI) a(n) = binomial(12*n, n); \\ Michel Marcus, Jul 02 2018
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 07 2010
STATUS
approved
Numbers n such that there is no bit position where the binary expansions of n and 8n are both 1.
+10
7
0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 17, 20, 21, 24, 28, 32, 33, 34, 35, 40, 42, 48, 49, 56, 64, 65, 66, 67, 68, 69, 70, 71, 80, 81, 84, 85, 96, 97, 98, 99, 112, 113, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 142, 160, 161, 162, 163, 168, 170, 192
OFFSET
1,3
COMMENTS
Equivalently, numbers n such that 9*n = 9 X n, i.e., 8*n XOR n = 9*n. Here * stands for ordinary multiplication and X means carryless (GF(2)[X]) multiplication (A048720).
Equivalently, numbers n such that the binomial coefficient C(9n,n) (A169958) is odd. - Zak Seidov, Aug 06 2010
The equivalence of these three definitions follows from Lucas's theorem on binomial coefficients. - N. J. A. Sloane, Sep 01 2010
Clearly all numbers k*2^i for 1 <= k <= 7 have this property. - N. J. A. Sloane, Sep 01 2010
A116361(a(n)) <= 3. - Reinhard Zumkeller, Feb 04 2006
FORMULA
a(n)/n^k is bounded (but does not tend to a limit), where k = 1.44... = A104287. - Charles R Greathouse IV, Sep 23 2012
MATHEMATICA
Reap[Do[If[OddQ[Binomial[9n, n]], Sow[n]], {n, 0, 400}]][[2, 1]] (* Zak Seidov, Aug 06 2010 *)
PROG
(PARI) is(n)=!bitand(n, n<<3) \\ Charles R Greathouse IV, Sep 23 2012
CROSSREFS
A115846 shows this sequence in binary.
A033052 is a subsequence.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 01 2006
EXTENSIONS
Edited with a new definition by N. J. A. Sloane, Sep 01 2010, merging this sequence with a sequence submitted by Zak Seidov, Aug 06 2010
STATUS
approved
a(n) = binomial(10*n, n).
+10
3
1, 10, 190, 4060, 91390, 2118760, 50063860, 1198774720, 28987537150, 706252528630, 17310309456440, 426342151127100, 10542859559688820, 261594860525768000, 6509613950241656640, 162392216278033616560, 4059949873964357469950, 101696990867999141755140
OFFSET
0,2
LINKS
FORMULA
a(n) = C(10*n-1, n-1)*C(100*n^2, 2)/(3*n*C(10*n+1, 3)), n > 0. - Gary Detlefs, Jan 02 2014
From Peter Bala, Feb 21 2022: (Start)
The o.g.f. A(x) is algebraic: (1 - A(x))*(1 + 9*A(x))^9 + (10^10)*x*A(x)^10 = 0.
Sum_{n >= 1} a(n)*( x*(9*x + 10)^9/(10^10*(1 + x)^10) )^n = x. (End)
PROG
(Magma) [Binomial(10*n, n): n in [0..50]]; // Vincenzo Librandi, Apr 21 2011
CROSSREFS
binomial(k*n,n): A000984 (k = 2), A005809 (k = 3), A005810 (k = 4), A001449 (k = 5), A004355 (k = 6), A004368 (k = 7), A004381 (k = 8), A169958 - A169961 (k = 9 thru 12).
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 07 2010
STATUS
approved
a(n) = binomial(11*n,n).
+10
2
1, 11, 231, 5456, 135751, 3478761, 90858768, 2404808340, 64276915527, 1731030945644, 46897636623981, 1276749965026536, 34898565177533200, 957150015393611193, 26327386978706181060, 725971390105457325456, 20062118235172477959495, 555476984964439251664995
OFFSET
0,2
LINKS
FORMULA
a(n) = C(11*n-1,n-1)*C(121*n^2,2)/(3*n*C(11*n+1,3)), n>0. - Gary Detlefs, Jan 02 2014
From Peter Bala, Feb 21 2022: (Start)
The o.g.f. A(x) is algebraic: (1 - A(x))*(1 + 10*A(x))^10 + (11^11)*x*A(x)^11 = 0.
Sum_{n >= 1} a(n)*( x*(10*x + 11)^10/(11^11*(1 + x)^11) )^n = x. (End)
MATHEMATICA
Table[Binomial[11 n, n], {n, 0, 20}] (* Vincenzo Librandi, Aug 07 2014 *)
PROG
(Magma) [Binomial(11*n, n): n in [0..20]]; // Vincenzo Librandi, Aug 07 2014
CROSSREFS
binomial(k*n,n): A000984 (k = 2), A005809 (k = 3), A005810 (k = 4), A001449 (k = 5), A004355 (k = 6), A004368 (k = 7), A004381 (k = 8), A169958 - A169961 (k = 9 thru 12).
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 07 2010
STATUS
approved

Search completed in 0.013 seconds