[go: up one dir, main page]

login
Search: a168524 -id:a168524
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle of coefficients of g.f. a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2), with a = -1, b = 1, c = 1.
+10
3
1, 1, 1, 1, 8, 1, 1, 31, 31, 1, 1, 98, 290, 98, 1, 1, 289, 1974, 1974, 289, 1, 1, 836, 11719, 25944, 11719, 836, 1, 1, 2419, 64929, 275307, 275307, 64929, 2419, 1, 1, 7046, 346192, 2573466, 4831134, 2573466, 346192, 7046, 1, 1, 20677, 1804144, 22163080, 70723522, 70723522, 22163080, 1804144, 20677, 1
OFFSET
0,5
FORMULA
From G. C. Greubel, Mar 19 2022: (Start)
G.f.: a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2), with a = -1, b = 1, c = 1.
T(n, n-k) = T(n, k). (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 8, 1;
1, 31, 31, 1;
1, 98, 290, 98, 1;
1, 289, 1974, 1974, 289, 1;
1, 836, 11719, 25944, 11719, 836, 1;
1, 2419, 64929, 275307, 275307, 64929, 2419, 1;
1, 7046, 346192, 2573466, 4831134, 2573466, 346192, 7046, 1;
1, 20677, 1804144, 22163080, 70723522, 70723522, 22163080, 1804144, 20677, 1;
MATHEMATICA
T[n_, a_, b_, c_]:= CoefficientList[Series[a*(1+x)^n + b*(1-x)^(n+2)* PolyLog[-n-1, x]/x + 2^n*c*(1-x)^(n+1)*LerchPhi[x, -n, 1/2], {x, 0, 30}], x];
Table[T[n, -1, 1, 1], {n, 0, 12}]//Flatten (* modified by G. C. Greubel, Mar 19 2022 *)
PROG
(Sage)
m=12
def LerchPhi(x, s, a): return sum( x^j/(j+a)^s for j in (0..3*m) )
def p(n, x, a, b, c): return a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2)
def T(n, k, a, b, c): return ( p(n, x, a, b, c) ).series(x, n+1).list()[k]
flatten([[T(n, k, -1, 1, 1) for k in (0..n)] for n in (0..m)]) # G. C. Greubel, Mar 19 2022
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Nov 28 2009
EXTENSIONS
Edited by G. C. Greubel, Mar 19 2022
STATUS
approved
Triangle of coefficients of g.f. a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2), with a = 65/2, b = -162/2, c = 135/2.
+10
3
19, 19, 19, 19, 146, 19, 19, 759, 759, 19, 19, 3154, 10374, 3154, 19, 19, 11543, 89398, 89398, 11543, 19, 19, 39210, 615669, 1394444, 615669, 39210, 19, 19, 127303, 3747297, 16267301, 16267301, 3747297, 127303, 19, 19, 401858, 21201472, 160611806, 302914330, 160611806, 21201472, 401858, 19
OFFSET
0,1
FORMULA
From G. C. Greubel, Mar 19 2022: (Start)
G.f.: a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2), with a = 65/2, b = -162/2, c = 135/2.
T(n, n-k) = T(n, k). (End)
EXAMPLE
Triangle begins as:
19;
19, 19;
19, 146, 19;
19, 759, 759, 19;
19, 3154, 10374, 3154, 19;
19, 11543, 89398, 89398, 11543, 19;
19, 39210, 615669, 1394444, 615669, 39210, 19;
19, 127303, 3747297, 16267301, 16267301, 3747297, 127303, 19;
19, 401858, 21201472, 160611806, 302914330, 160611806, 21201472, 401858, 19;
MATHEMATICA
T[n_, a_, b_, c_]:= CoefficientList[Series[a*(1+x)^n + b*(1-x)^(n+2)* PolyLog[-n-1, x]/x + 2^n*c*(1-x)^(n+1)*LerchPhi[x, -n, 1/2], {x, 0, 30}], x];
Table[T[n, 65/2, -162/2, 135/2], {n, 0, 12}]//Flatten (* modified by G. C. Greubel, Mar 19 2022 *)
PROG
(Sage)
m=12
def LerchPhi(x, s, a): return sum( x^j/(j+a)^s for j in (0..3*m) )
def p(n, x, a, b, c): return a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2)
def T(n, k, a, b, c): return ( p(n, x, a, b, c) ).series(x, n+1).list()[k]
flatten([[T(n, k, 65/2, -162/2, 135/2) for k in (0..n)] for n in (0..m)]) # G. C. Greubel, Mar 19 2022
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Nov 28 2009
EXTENSIONS
Edited by G. C. Greubel, Mar 19 2022
STATUS
approved
T(n,k) = (q*Sum_{j=0..k+1} (-1)^j*binomial(n+1, j)*(k+1-j)^n - p*binomial(n-1, k))/2 where p=12 and q=14.
+10
2
1, 1, 1, 1, 16, 1, 1, 59, 59, 1, 1, 158, 426, 158, 1, 1, 369, 2054, 2054, 369, 1, 1, 804, 8247, 16792, 8247, 804, 1, 1, 1687, 29925, 109123, 109123, 29925, 1687, 1, 1, 3466, 102088, 617302, 1092910, 617302, 102088, 3466, 1, 1, 7037, 334664, 3185840, 9171722, 9171722, 3185840, 334664, 7037, 1
OFFSET
1,5
COMMENTS
Row n is made of coefficients from 7*(1 - x)^(n+1) * polylog(-n,x)/x - 6*(1 + x)^(n-1). - Thomas Baruchel, Jun 03 2018
LINKS
Thomas Baruchel, A conjectured formula for the polylogarithm of a negative integer order, Mathematics Stack Exchange question, Jun 04 2018.
FORMULA
p=12; q=14; T(n,k) = (q*Sum_{j=0..k+1} (-1)^j*binomial(n+1, j)*(k+1-j)^n - p*binomial(n-1, k))/2.
a(n) = 3*A168524(n) - 2*A154337(n). - Thomas Baruchel, Jun 08 2018
EXAMPLE
Triangle begins:
1;
1, 1;
1, 16, 1;
1, 59, 59, 1;
1, 158, 426, 158, 1;
1, 369, 2054, 2054, 369, 1;
1, 804, 8247, 16792, 8247, 804, 1;
1, 1687, 29925, 109123, 109123, 29925, 1687, 1;
MAPLE
T:= proc(n, k): 7*add((-1)^j*binomial(n+1, j)*(k-j+1)^n, j = 0..k+1) - 6*binomial(n-1, k); end proc; seq(seq(T(n, k), k=0..n-1), n=1..10); # G. C. Greubel, Nov 13 2019
MATHEMATICA
i=12; l=14; Table[Table[(l*Sum[(-1)^j*Binomial[n+1, j](k+1-j)^n, {j, 0, k+1}] - i*Binomial[n-1, k])/2, {k, 0, n-1}], {n, 10}]//Flatten
PROG
(PARI) T(n, k) = 7*sum(j=0, k+1, (-1)^j*binomial(n+1, j)*(k-j+1)^n) - 6* binomial(n-1, k);
for(n=1, 10, for(k=0, n-1, print1(T(n, k), ", "))) \\ G. C. Greubel, Jun 03 2018
(PARI) row(n) = Vec(7*(1 - x)^(n+1)*polylog(-n, x)/x - 6*(1 + x)^(n-1)); \\ Michel Marcus, Jun 08 2018
(Magma) [ 7*(&+[(-1)^j*Binomial(n+1, j)*(k-j+1)^n: j in [0..k+1]]) - 6*Binomial(n-1, k): k in [0..n-1], n in [1..10]]; // G. C. Greubel, Nov 13 2019
(Sage) [[ 7*sum( (-1)^j*binomial(n+1, j)*(k-j+1)^n for j in (0..k+1)) - 6*binomial(n-1, k) for k in (0..n-1)] for n in (1..10)] # G. C. Greubel, Nov 13 2019
CROSSREFS
Cf. Eulerian numbers (A008292) and Pascal's triangle (A007318).
Cf. A141696.
KEYWORD
nonn,tabl,easy
AUTHOR
Roger L. Bagula, Sep 11 2008
EXTENSIONS
Edited by G. C. Greubel, Nov 13 2019
STATUS
approved

Search completed in 0.007 seconds