[go: up one dir, main page]

login
Search: a167784 -id:a167784
     Sort: relevance | references | number | modified | created      Format: long | short | data
Binomial transform of poly-Bernoulli numbers A027649.
+10
8
1, 5, 23, 101, 431, 1805, 7463, 30581, 124511, 504605, 2038103, 8211461, 33022991, 132623405, 532087943, 2133134741, 8546887871, 34230598205, 137051532983, 548593552421, 2195536471151, 8785632669005, 35152991029223
OFFSET
0,2
COMMENTS
Binomial transform is A085351.
a(n) mod 10 = period 4:repeat 1,5,3,1 = A132400. - Paul Curtz, Nov 13 2009
FORMULA
G.f.: (1-2x)/((1-3x)(1-4x)).
E.g.f.: 2exp(4x) - exp(3x).
a(n) = 2*4^n-3^n.
From Paul Curtz, Nov 13 2009: (Start)
a(n) = 4*a(n-1) + 9*a(n-2) - 36*a(n-3);
a(n) = 4*a(n-1) + 3^(n-1), both like A005061 (note for A005061 dual formula a(n) = 3*a(n-1) + 4^(n-1) = 3*a(n-1) + A000302(n-1)).
a(n) = 3*a(n-1) + 2^(2n+1) = 3*a(n-1) + A004171(n).
a(n) = A005061(n) + A000302(n).
b(n) = mix(A005061, A085350) = 0,1,1,5,7,23,... = differences of (A167762 = 0,0,1,2,7,14,37,...); b(n) differences = A167784. (End)
MATHEMATICA
LinearRecurrence[{4, 9, -36}, {1, 5, 23}, 30] (* Harvey P. Dale, Nov 30 2011 *)
LinearRecurrence[{7, -12}, {1, 5}, 23] (* Ray Chandler, Aug 03 2015 *)
PROG
(Magma) [2*4^n-3^n: n in [0..30]]; // Vincenzo Librandi, Aug 13 2011
CROSSREFS
a(n-1) = A080643(n)/2 = A081674(n+1) - A081674(n).
Cf. A000244 (3^n).
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jun 24 2003
STATUS
approved
a(n) = 2^n - A108411(n).
+10
6
0, 1, 1, 5, 7, 23, 37, 101, 175, 431, 781, 1805, 3367, 7463, 14197, 30581, 58975, 124511, 242461, 504605, 989527, 2038103, 4017157, 8211461, 16245775, 33022991, 65514541, 132623405, 263652487, 532087943, 1059392917, 2133134741, 4251920575, 8546887871
OFFSET
0,4
COMMENTS
The binomial transform of (0 followed by A077917).
FORMULA
a(n) = A167762(n+1) - A167762(n).
a(n+1) - a(n) = A167784(n).
a(n) = 2*a(n-1) + 3*a(n-2) - 6*a(n-3).
G.f.: x*(1-x)/((1-2*x)*(1-3*x^2)).
a(2n) = A005061(n), a(2n+1) = A085350(n).
a(n) - 2*a(n-1) = (-1)^(n+1)*A083658(n+1).
From G. C. Greubel, Sep 10 2023: (Start)
a(n) = (1/2)*(2^(n+1) - (1+(-1)^n)*3^(n/2) - (1-(-1)^n)*3^((n-1)/2)).
E.g.f.: exp(2*x) - cosh(sqrt(3)*x) - (1/sqrt(3))*sinh(sqrt(3)*x). (End)
MATHEMATICA
LinearRecurrence[{2, 3, -6}, {0, 1, 1}, 50] (* G. C. Greubel, Jul 01 2016 *)
PROG
(Magma) I:=[0, 1, 1]; [n le 3 select I[n] else 2*Self(n-1) +3*Self(n-2) -6*Self(n-3): n in [1..40]]; // G. C. Greubel, Sep 10 2023
(SageMath)
def A167936(n): return 2^n - ((n+1)%2)*3^(n//2) - (n%2)*3^((n-1)//2)
[A167936(n) for n in range(41)] # G. C. Greubel, Sep 10 2023
(Python)
def A167936(n): return (1<<n)-3**(n>>1) # Chai Wah Wu, Nov 14 2023
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Nov 15 2009
EXTENSIONS
Edited and extended by R. J. Mathar, Feb 27 2010
STATUS
approved

Search completed in 0.008 seconds