[go: up one dir, main page]

login
Search: a165912 -id:a165912
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of 2-elements orbits of S3 action on irreducible polynomials of degree 3n, n > 0, over GF(2).
+10
4
1, 0, 1, 1, 2, 3, 6, 10, 19, 33, 62, 112, 210, 387, 728, 1360, 2570, 4845, 9198, 17459, 33288, 63519, 121574, 232960, 447392, 860265, 1657009, 3195465, 6170930, 11930100, 23091222, 44738560, 86767016, 168428805, 327235602, 636289024, 1238188770, 2411205111, 4698767640, 9162588158, 17878237850
OFFSET
1,5
COMMENTS
Arndt's PARI code computes a(n) as the sum, divided by n, of every 3rd term in row n of L = A050186 = Möbius transform of binomials, starting with k = (1-n) mod 3 (nonnegative remainder), where k = 0 and k = n give L(n, k) = 0 and can be omitted. Cf. A053727, EXAMPLE and second PROGRAM. - M. F. Hasler, Sep 27 2018
LINKS
J. E. Iglesias, Enumeration of polytypes of MX and MX_2 through the use of the symmetry of the Zhadanov symbol, Acta Cryst. A 62 (3) (2006) 176-194, Table 1.
J.-F. Michon, P. Ravache, On different families of invariant irreducible polynomials over F_2, Finite fields & Applications 16 (2010) 163-174.
FORMULA
a(n) = (sum_{d|n, n/d != 0 mod 3} mu(n/d)*(2^d - (-1)^d))/(3n).
EXAMPLE
Illustrating computation via L = A050186, cf. COMMENTS: a(1) = [L(1,0)] = 0. a(2) = [L(2,2)] = 0. a(3) = L(3,1)/3 = 3/3 = 1. a(4) = ([L(4,0)] + L(4,3))/4 = 4/4 = 1. a(5) = (L(5,2) + [L(5,5)])/5 = 10/5 = 2. In [...] are terms L(n,0) = L(n,n) = 0.
MAPLE
f:= proc(n) local D, d;
D:=remove(d -> (n/3/d)::integer, numtheory:-divisors(n));
add(numtheory:-mobius(n/d)*(2^d - (-1)^d), d=D)/(3*n)
end proc:
map(f, [$1..100]); # Robert Israel, Jul 14 2019
MATHEMATICA
a[n_] := Sum[If[Mod[n/d, 3] == 0, 0, MoebiusMu[n/d]*(2^d - (-1)^d)/(3n)], {d, Divisors[n]}];
Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Feb 02 2023 *)
PROG
(PARI)
L(n, k) = sumdiv(gcd(n, k), d, moebius(d) * binomial(n/d, k/d) );
a(n) = sum(k=0, n, if( (n+k)%3==1, L(n, k), 0 ) ) / n;
vector(55, n, a(n))
/* Joerg Arndt, Jun 28 2012 */
(PARI) A165920(n, k=(1-n)%3)=sum(i=0, (n-k)\3, A050186(n, k+3*i))\n \\ For illustration. - M. F. Hasler, Sep 30 2018
CROSSREFS
This sequence is the half of A165912 (the number of alternate polynomials). A001037 is the enumeration by degree of the polynomials of I. A000048 is the number of 3-elements orbits of S3 action on I.
KEYWORD
easy,nonn
AUTHOR
Jean Francis Michon, Philippe Ravache (philippe.ravache(AT)univ-rouen.fr), Sep 30 2009
STATUS
approved

Search completed in 0.009 seconds