[go: up one dir, main page]

login
Search: a163842 -id:a163842
     Sort: relevance | references | number | modified | created      Format: long | short | data
Row sums of triangle A163842.
+20
1
1, 13, 109, 765, 4881, 29369, 169919, 956237, 5272945, 28632525, 153638211, 816715073, 4309138419, 22598433555, 117926579385, 612863125965, 3174156512865
OFFSET
0,2
COMMENTS
a(n) = sum{k=0..n} sum{i=k..n} binomial(n-k,n-i)*(2i+1)$
where i$ denotes the swinging factorial of i (A056040).
MAPLE
swing := proc(n) option remember; if n = 0 then 1 elif
irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
a := proc(n) local i, k; add(add(binomial(n-k, n-i)*swing(2*i+1), i=k..n), k=0..n) end:
CROSSREFS
Cf. A163842.
KEYWORD
nonn
AUTHOR
Peter Luschny, Aug 06 2009
STATUS
approved
Triangle interpolating the binomial transform of the swinging factorial (A163865) with the swinging factorial (A056040).
+10
4
1, 2, 1, 5, 3, 2, 16, 11, 8, 6, 47, 31, 20, 12, 6, 146, 99, 68, 48, 36, 30, 447, 301, 202, 134, 86, 50, 20, 1380, 933, 632, 430, 296, 210, 160, 140, 4251, 2871, 1938, 1306, 876, 580, 370, 210, 70, 13102, 8851, 5980, 4042, 2736, 1860, 1280, 910, 700, 630
OFFSET
0,2
COMMENTS
Triangle read by rows.
An analog to the binomial triangle of the factorials (A076571).
FORMULA
T(n,k) = Sum_{i=k..n} binomial(n-k,n-i)*i$ where i$ denotes the swinging factorial of i (A056040), for n >= 0, k >= 0.
EXAMPLE
Triangle begins
1;
2, 1;
5, 3, 2;
16, 11, 8, 6;
47, 31, 20, 12, 6;
146, 99, 68, 48, 36, 30;
447, 301, 202, 134, 86, 50, 20;
MAPLE
SumTria := proc(f, n, display) local m, A, j, i, T; T:=f(0);
for m from 0 by 1 to n-1 do A[m] := f(m);
for j from m by -1 to 1 do A[j-1] := A[j-1] + A[j] od;
for i from 0 to m do T := T, A[i] od;
if display then print(seq(T[i], i=nops([T])-m..nops([T]))) fi;
od; subsop(1=NULL, [T]) end:
swing := proc(n) option remember; if n = 0 then 1 elif
irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
# Computes n rows of the triangle:
A163840 := n -> SumTria(swing, n, true);
MATHEMATICA
sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[Binomial[n - k, n - i]*sf[i], {i, k, n}]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 28 2013 *)
CROSSREFS
Row sums are A163843.
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Aug 06 2009
STATUS
approved
Triangle interpolating the swinging factorial (A056040) restricted to even indices with its binomial transform. Same as interpolating bilateral Schroeder paths (A026375) with the central binomial coefficients (A000984).
+10
4
1, 3, 2, 11, 8, 6, 45, 34, 26, 20, 195, 150, 116, 90, 70, 873, 678, 528, 412, 322, 252, 3989, 3116, 2438, 1910, 1498, 1176, 924, 18483, 14494, 11378, 8940, 7030, 5532, 4356, 3432, 86515, 68032, 53538
OFFSET
0,2
COMMENTS
For n >= 0, k >= 0 let T(n,k) = sum{i=k..n} binomial(n-k,n-i)*(2i)$ where i$ denotes the swinging factorial of i (A056040). Triangle read by rows.
LINKS
Peter Luschny, Swinging Factorial.
Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
EXAMPLE
Triangle begins
1;
3, 2;
11, 8, 6;
45, 34, 26, 20;
195, 150, 116, 90, 70;
873, 678, 528, 412, 322, 252;
3989, 3116, 2438, 1910, 1498, 1176, 924;
MAPLE
Computes n rows of the triangle. For the functions 'SumTria' and 'swing' see A163840.
a := n -> SumTria(k->swing(2*k), n, true);
MATHEMATICA
sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[Binomial[n - k, n - i]*sf[2*i], {i, k, n}]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 28 2013 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Aug 06 2009
STATUS
approved
Binomial transform of the beta numbers 1/beta(n+1,n+1) (A002457).
+10
2
1, 7, 43, 249, 1395, 7653, 41381, 221399, 1175027, 6196725, 32512401, 169863147, 884318973, 4589954619, 23761814955, 122735222505, 632698778835, 3255832730565, 16728131746145, 85826852897675, 439793834236745, 2251006269442815, 11509340056410735, 58790764269668805
OFFSET
0,2
COMMENTS
Also a(n) = Sum_{i=0..n} binomial(n,n-i) (2*i+1)$ where i$ denotes the swinging factorial of i (A056040).
LINKS
Peter Luschny, Swinging Factorial.
FORMULA
From Vaclav Kotesovec, Oct 21 2012: (Start)
G.f.: -sqrt(x-1)/(5*x-1)^(3/2).
Recurrence: n*a(n) = (6*n+1)*a(n-1) - 5*(n-1)*a(n-2).
a(n) ~ 4*5^(n-1/2)*sqrt(n)/sqrt(Pi).
(End)
a(n) = hypergeom([3/2, -n], [1], -4) = hypergeom([3/2, n+1], [1], 4/5)/(5*sqrt(5)). - Vladimir Reshetnikov, Apr 25 2016
E.g.f.: exp(3*x) * ((1 + 4*x) * BesselI(0,2*x) + 4 * x * BesselI(1,2*x)). - Ilya Gutkovskiy, Nov 19 2021
MAPLE
a := proc(n) local i; add(binomial(n, i)/Beta(i+1, i+1), i=0..n) end:
MATHEMATICA
CoefficientList[Series[-Sqrt[x-1]/(5*x-1)^(3/2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 21 2012 *)
sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[n_] := Sum[ Binomial[n, n-i]*sf[2*i+1], {i, 0, n}]; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Jul 26 2013 *)
Table[Hypergeometric2F1[3/2, -n, 1, -4], {n, 0, 20}] (* Vladimir Reshetnikov, Apr 25 2016 *)
CROSSREFS
Cf. A163842.
KEYWORD
nonn
AUTHOR
Peter Luschny, Aug 06 2009
STATUS
approved

Search completed in 0.005 seconds