[go: up one dir, main page]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a163767 -id:a163767
Displaying 1-10 of 14 results found. page 1 2
     Sort: relevance | references | number | modified | created      Format: long | short | data
A304965 Expansion of Product_{k>=1} 1/(1 - x^k)^tau_k(k), where tau_k(k) = number of ordered k-factorizations of k (A163767). +20
3
1, 1, 3, 6, 19, 30, 96, 152, 461, 775, 1883, 3271, 8751, 14370, 34004, 59491, 140450, 239746, 541817, 932681, 2089189, 3606641, 7719178, 13398411, 28848808, 49603982, 103047935, 179154858, 370200348, 639269735, 1295389370, 2241994088, 4511677298, 7798101800, 15408901600 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Euler transform of A163767.
LINKS
N. J. A. Sloane, Transforms
FORMULA
G.f.: Product_{k>=1} 1/(1 - x^k)^A163767(k).
MAPLE
A:= proc(n, k) option remember; `if`(k=1, 1,
add(A(d, k-1), d=numtheory[divisors](n)))
end:
a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
A(d$2), d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..40); # Alois P. Heinz, May 22 2018
MATHEMATICA
nmax = 34; CoefficientList[Series[Product[1/(1 - x^k)^Times@@(Binomial[# + k - 1, k - 1]&/@FactorInteger[k][[All, 2]]), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d Times@@(Binomial[# + d - 1, d - 1]&/@FactorInteger[d][[All, 2]]), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 34}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 22 2018
STATUS
approved
A321287 Expansion of Product_{k>=1} (1 + x^k)^tau_k(k), where tau_k(k) = number of ordered k-factorizations of k (A163767). +20
1
1, 1, 2, 5, 14, 22, 70, 109, 318, 551, 1203, 2136, 5752, 9263, 20641, 37151, 85084, 144918, 317356, 546730, 1196302, 2076810, 4281584, 7459351, 15860805, 27146911, 54715933, 95712097, 194059563, 334322338, 663159101, 1147479053, 2270647257, 3923732160, 7587368893 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
MATHEMATICA
tau[n_, 1] = 1; tau[n_, k_]:=tau[n, k] = Plus @@ (tau[#, k-1] & /@ Divisors[n]); nmax = 40; CoefficientList[Series[Product[(1+x^k)^tau[k, k], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 03 2018, after Robert G. Wilson v *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 02 2018
STATUS
approved
A305049 Expansion of 1/(1 - Sum_{k>=1} tau_k(k)*x^k), where tau_k(k) = number of ordered k-factorizations of k (A163767). +20
0
1, 1, 3, 8, 27, 67, 216, 569, 1747, 4812, 14041, 39483, 115408, 326385, 941735, 2684170, 7725097, 22063737, 63354066, 181223899, 519883185, 1488316952, 4266788191, 12219763777, 35023995792, 100326757107, 287503501905, 823654031283, 2360146144917, 6761847714698, 19374935267810 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Invert transform of A163767.
LINKS
N. J. A. Sloane, Transforms
FORMULA
G.f.: 1/(1 - Sum_{k>=1} A163767(k)*x^k).
MAPLE
A:= proc(n, k) option remember; `if`(k=1, 1,
add(A(d, k-1), d=numtheory[divisors](n)))
end:
a:= proc(n) option remember; `if`(n=0, 1,
add(A(j$2)*a(n-j), j=1..n))
end:
seq(a(n), n=0..35); # Alois P. Heinz, May 24 2018
MATHEMATICA
nmax = 30; CoefficientList[Series[1/(1 - Sum[Times @@ (Binomial[# + k - 1, k - 1] & /@ FactorInteger[k][[All, 2]]) x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = Sum[Times @@ (Binomial[# + k - 1, k - 1] & /@ FactorInteger[k][[All, 2]]) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 30}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 24 2018
STATUS
approved
A060690 a(n) = binomial(2^n + n - 1, n). +10
32
1, 2, 10, 120, 3876, 376992, 119877472, 131254487936, 509850594887712, 7145544812472168960, 364974894538906616240640, 68409601066028072105113098240, 47312269462735023248040155132636160, 121317088003402776955124829814219234385920 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Also the number of n X n (0,1) matrices modulo rows permutation (by symmetry this is the same as the number of (0,1) matrices modulo columns permutation), i.e., the number of equivalence classes where two matrices A and B are equivalent if one of them is the result of permuting the rows of the other. The total number of (0,1) matrices is in sequence A002416.
Row sums of A220886. - Geoffrey Critzer, Nov 20 2014
LINKS
FORMULA
a(n) = [x^n] 1/(1-x)^(2^n).
a(n) = (1/n!)*Sum_{k=0..n} ( (-1)^(n-k)*Stirling1(n, k)*2^(k*n) ). - Vladeta Jovovic, May 28 2004
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(2^n+n,k) - Vladeta Jovovic, Jan 21 2008
a(n) = Sum_{k=0..n} Stirling1(n,k)*(2^n+n-1)^k/n!. - Vladeta Jovovic, Jan 21 2008
G.f.: A(x) = Sum_{n>=0} [ -log(1 - 2^n*x)]^n / n!. More generally, Sum_{n>=0} [ -log(1 - q^n*x)]^n/n! = Sum_{n>=0} C(q^n+n-1,n)*x^n ; also Sum_{n>=0} log(1 + q^n*x)^n/n! = Sum_{n>=0} C(q^n,n)*x^n. - Paul D. Hanna, Dec 29 2007
a(n) ~ 2^(n^2) / n!. - Vaclav Kotesovec, Jul 02 2016
a(n) = A163767(2^n). - Alois P. Heinz, Jun 12 2024
MAPLE
with(combinat): for n from 0 to 20 do printf(`%d, `, binomial(2^n+n-1, n)) od:
MATHEMATICA
Table[Binomial[2^n+n-1, n], {n, 0, 20}] (* Harvey P. Dale, Apr 19 2012 *)
PROG
(PARI) a(n)=binomial(2^n+n-1, n)
(PARI) {a(n)=polcoeff(sum(k=0, n, (-log(1-2^k*x +x*O(x^n)))^k/k!), n)} \\ Paul D. Hanna, Dec 29 2007
(PARI) a(n) = sum(k=0, n, stirling(n, k, 1)*(2^n+n-1)^k/n!); \\ Paul D. Hanna, Nov 20 2014
(Sage) [binomial(2^n +n-1, n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
(Magma) [Binomial(2^n +n-1, n): n in [0..20]]; // G. C. Greubel, Mar 14 2021
(Python)
from math import comb
def A060690(n): return comb((1<<n)+n-1, n) # Chai Wah Wu, Jul 05 2024
CROSSREFS
Sequences of the form binomial(2^n +p*n +q, n): A136556 (0,-1), A014070 (0,0), A136505 (0,1), A136506 (0,2), this sequence (1,-1), A132683 (1,0), A132684 (1,1), A132685 (2,0), A132686 (2,1), A132687 (3,-1), A132688 (3,0), A132689 (3,1).
Main diagonal of A092056.
Central terms of A137153.
KEYWORD
nonn
AUTHOR
Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 19 2001
EXTENSIONS
More terms from James A. Sellers, Apr 20 2001
Edited by N. J. A. Sloane, Mar 17 2008
STATUS
approved
A334997 Array T read by ascending antidiagonals: T(n, k) = Sum_{d divides n} T(d, k-1) with T(n, 0) = 1. +10
25
1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 3, 3, 4, 1, 1, 2, 6, 4, 5, 1, 1, 4, 3, 10, 5, 6, 1, 1, 2, 9, 4, 15, 6, 7, 1, 1, 4, 3, 16, 5, 21, 7, 8, 1, 1, 3, 10, 4, 25, 6, 28, 8, 9, 1, 1, 4, 6, 20, 5, 36, 7, 36, 9, 10, 1, 1, 2, 9, 10, 35, 6, 49, 8, 45, 10, 11, 1, 1, 6, 3, 16, 15, 56, 7, 64, 9, 55, 11, 12, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,5
COMMENTS
T(n, k) is called the generalized divisor function (see Beekman).
As an array with offset n=1, k=0, T(n,k) is the number of length-k chains of divisors of n. For example, the T(4,3) = 10 chains are: 111, 211, 221, 222, 411, 421, 422, 441, 442, 444. - Gus Wiseman, Aug 04 2022
REFERENCES
Richard Beekman, An Introduction to Number-Theoretic Combinatorics, Lulu Press 2017.
LINKS
FORMULA
T(n, k) = Sum_{d divides n} T(d, k-1) with T(n, 0) = 1 (see Theorem 3 in Beekman's article).
T(i*j, k) = T(i, k)*T(j, k) if i and j are coprime positive integers (see Lemma 1 in Beekman's article).
T(p^m, k) = binomial(m+k, k) for every prime p (see Lemma 2 in Beekman's article).
EXAMPLE
From Gus Wiseman, Aug 04 2022: (Start)
Array begins:
k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8
n=1: 1 1 1 1 1 1 1 1 1
n=2: 1 2 3 4 5 6 7 8 9
n=3: 1 2 3 4 5 6 7 8 9
n=4: 1 3 6 10 15 21 28 36 45
n=5: 1 2 3 4 5 6 7 8 9
n=6: 1 4 9 16 25 36 49 64 81
n=7: 1 2 3 4 5 6 7 8 9
n=8: 1 4 10 20 35 56 84 120 165
The T(4,5) = 21 chains:
(1,1,1,1,1) (4,2,1,1,1) (4,4,2,2,2)
(2,1,1,1,1) (4,2,2,1,1) (4,4,4,1,1)
(2,2,1,1,1) (4,2,2,2,1) (4,4,4,2,1)
(2,2,2,1,1) (4,2,2,2,2) (4,4,4,2,2)
(2,2,2,2,1) (4,4,1,1,1) (4,4,4,4,1)
(2,2,2,2,2) (4,4,2,1,1) (4,4,4,4,2)
(4,1,1,1,1) (4,4,2,2,1) (4,4,4,4,4)
The T(6,3) = 16 chains:
(1,1,1) (3,1,1) (6,2,1) (6,6,1)
(2,1,1) (3,3,1) (6,2,2) (6,6,2)
(2,2,1) (3,3,3) (6,3,1) (6,6,3)
(2,2,2) (6,1,1) (6,3,3) (6,6,6)
The triangular form T(n-k,k) gives the number of length k chains of divisors of n - k. It begins:
1
1 1
1 2 1
1 2 3 1
1 3 3 4 1
1 2 6 4 5 1
1 4 3 10 5 6 1
1 2 9 4 15 6 7 1
1 4 3 16 5 21 7 8 1
1 3 10 4 25 6 28 8 9 1
1 4 6 20 5 36 7 36 9 10 1
1 2 9 10 35 6 49 8 45 10 11 1
(End)
MATHEMATICA
T[n_, k_]:=If[n==1, 1, Product[Binomial[Extract[Extract[FactorInteger[n], i], 2]+k, k], {i, 1, Length[FactorInteger[n]]}]]; Table[T[n-k, k], {n, 1, 13}, {k, 0, n-1}]//Flatten
PROG
(PARI) T(n, k) = if (k==0, 1, sumdiv(n, d, T(d, k-1)));
matrix(10, 10, n, k, T(n, k-1)) \\ to see the array for n>=1, k >=0; \\ Michel Marcus, May 20 2020
CROSSREFS
Cf. A000217 (4th row), A000290 (6th row), A000292 (8th row), A000332 (16th row), A000389 (32nd row), A000537 (36th row), A000578 (30th row), A002411 (12th row), A002417 (24th row), A007318, A027800 (48th row), A335078, A335079.
Column k = 2 of the array is A007425.
Column k = 3 of the array is A007426.
Column k = 4 of the array is A061200.
The transpose of the array is A077592.
The subdiagonal n = k + 1 of the array is A163767.
The version counting all multisets of divisors (not just chains) is A343658.
The strict case is A343662 (row sums: A337256).
Diagonal n = k of the array is A343939.
Antidiagonal sums of the array (or row sums of the triangle) are A343940.
A067824(n) counts strict chains of divisors starting with n.
A074206(n) counts strict chains of divisors from n to 1.
A146291 counts divisors by Omega.
A251683(n,k) counts strict length k + 1 chains of divisors from n to 1.
A253249(n) counts nonempty chains of divisors of n.
A334996(n,k) counts strict length k chains of divisors from n to 1.
A337255(n,k) counts strict length k chains of divisors starting with n.
KEYWORD
nonn,tabl,mult
AUTHOR
Stefano Spezia, May 19 2020
EXTENSIONS
Duplicate term removed by Stefano Spezia, Jun 03 2020
STATUS
approved
A077592 Table by antidiagonals of tau_k(n), the k-th Piltz function (see A007425), or n-th term of the sequence resulting from applying the inverse Möbius transform (k-1) times to the all-ones sequence. +10
23
1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 3, 3, 1, 1, 5, 4, 6, 2, 1, 1, 6, 5, 10, 3, 4, 1, 1, 7, 6, 15, 4, 9, 2, 1, 1, 8, 7, 21, 5, 16, 3, 4, 1, 1, 9, 8, 28, 6, 25, 4, 10, 3, 1, 1, 10, 9, 36, 7, 36, 5, 20, 6, 4, 1, 1, 11, 10, 45, 8, 49, 6, 35, 10, 9, 2, 1, 1, 12, 11, 55, 9, 64, 7, 56, 15, 16, 3, 6, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,5
COMMENTS
As an array with offset n=0, k=1, also the number of length n chains of divisors of k. - Gus Wiseman, Aug 04 2022
LINKS
Adolf Piltz, Ueber das Gesetz, nach welchem die mittlere Darstellbarkeit der natürlichen Zahlen als Produkte einer gegebenen Anzahl Faktoren mit der Grösse der Zahlen wächst, Doctoral Dissertation, Friedrich-Wilhelms-Universität zu Berlin, 1881; the k-th Piltz function tau_k(n) is denoted by phi(n,k) and its recurrence and Dirichlet series appear on p. 6.
Wikipedia, Adolf Piltz.
FORMULA
If n = Product_i p_i^e_i, then T(n,k) = Product_i C(k+e_i-1, e_i). T(n,k) = sum_d{d|n} T(n-1,d) = A077593(n,k) - A077593(n-1,k).
Columns are multiplicative.
Dirichlet g.f. for column k: Zeta(s)^k. - Geoffrey Critzer, Feb 16 2015
A(n,k) = A334997(k,n). - Gus Wiseman, Aug 04 2022
EXAMPLE
T(6,3) = 9 because we have: 1*1*6, 1*2*3, 1*3*2, 1*6*1, 2*1*3, 2*3*1, 3*1*2, 3*2*1, 6*1*1. - Geoffrey Critzer, Feb 16 2015
From Gus Wiseman, May 03 2021: (Start)
Array begins:
k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8
n=0: 1 1 1 1 1 1 1 1
n=1: 1 2 2 3 2 4 2 4
n=2: 1 3 3 6 3 9 3 10
n=3: 1 4 4 10 4 16 4 20
n=4: 1 5 5 15 5 25 5 35
n=5: 1 6 6 21 6 36 6 56
n=6: 1 7 7 28 7 49 7 84
n=7: 1 8 8 36 8 64 8 120
n=8: 1 9 9 45 9 81 9 165
The triangular form T(n,k) = A(n-k,k) gives the number of length n - k chains of divisors of k. It begins:
1
1 1
1 2 1
1 3 2 1
1 4 3 3 1
1 5 4 6 2 1
1 6 5 10 3 4 1
1 7 6 15 4 9 2 1
1 8 7 21 5 16 3 4 1
1 9 8 28 6 25 4 10 3 1
1 10 9 36 7 36 5 20 6 4 1
1 11 10 45 8 49 6 35 10 9 2 1
(End)
MAPLE
with(numtheory):
A:= proc(n, k) option remember; `if`(k=1, 1,
add(A(d, k-1), d=divisors(n)))
end:
seq(seq(A(n, 1+d-n), n=1..d), d=1..14); # Alois P. Heinz, Feb 25 2015
MATHEMATICA
tau[n_, 1] = 1; tau[n_, k_] := tau[n, k] = Plus @@ (tau[ #, k - 1] & /@ Divisors[n]); Table[tau[n - k + 1, k], {n, 14}, {k, n, 1, -1}] // Flatten (* Robert G. Wilson v *)
tau[1, k_] := 1; tau[n_, k_] := Times @@ (Binomial[Last[#] + k - 1, k - 1] & /@ FactorInteger[n]); Table[tau[k, n - k + 1], {n, 1, 13}, {k, 1, n}] // Flatten (* Amiram Eldar, Sep 13 2020 *)
Table[Length[Select[Tuples[Divisors[k], n-k], And@@Divisible@@@Partition[#, 2, 1]&]], {n, 12}, {k, 1, n}] (* TRIANGLE, Gus Wiseman, May 03 2021 *)
Table[Length[Select[Tuples[Divisors[k], n-1], And@@Divisible@@@Partition[#, 2, 1]&]], {n, 6}, {k, 6}] (* ARRAY, Gus Wiseman, May 03 2021 *)
CROSSREFS
Columns include (with multiplicity and some offsets) A000012, A000027, A000027, A000217, A000027, A000290, A000027, A000292, A000217, A000290, A000027, A002411, A000027, A000290, A000290, A000332 etc.
Cf. A077593.
Row n = 2 of the array is A007425.
Row n = 3 of the array is A007426.
Row n = 4 of the array is A061200.
The diagonal n = k of the array (central column of the triangle) is A163767.
The transpose of the array is A334997.
Diagonal n = k of the array is A343939.
Antidiagonal sums of the array (or row sums of the triangle) are A343940.
A067824(n) counts strict chains of divisors starting with n.
A074206(n) counts strict chains of divisors from n to 1.
A146291(n,k) counts divisors of n with k prime factors (with multiplicity).
A251683(n,k) counts strict length k + 1 chains of divisors from n to 1.
A253249(n) counts nonempty chains of divisors of n.
A334996(n,k) counts strict length k chains of divisors from n to 1.
A337255(n,k) counts strict length k chains of divisors starting with n.
KEYWORD
mult,nonn,tabl,look
AUTHOR
Henry Bottomley, Nov 08 2002
EXTENSIONS
Typo in formula fixed by Geoffrey Critzer, Feb 16 2015
STATUS
approved
A346148 Square array read by descending antidiagonals: T(n, k) = mu^n(k) where mu^1(k) = mu(k) = A008683(k) and for each n >= 1, mu^(n+1)(k) is the Dirichlet convolution of mu(k) and mu^n(k). +10
8
1, -1, 1, -1, -2, 1, 0, -2, -3, 1, -1, 1, -3, -4, 1, 1, -2, 3, -4, -5, 1, -1, 4, -3, 6, -5, -6, 1, 0, -2, 9, -4, 10, -6, -7, 1, 0, 0, -3, 16, -5, 15, -7, -8, 1, 1, 1, -1, -4, 25, -6, 21, -8, -9, 1, -1, 4, 3, -4, -5, 36, -7, 28, -9, -10, 1, 0, -2, 9, 6, -10, -6 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,5
LINKS
FORMULA
If k = Product (p_j^m_j) then T(n, k) = Product (binomial(n, m_j)*(-1)^m_j).
Dirichlet g.f. of the n-th row: 1/zeta^n(s).
T(n, p) = -n.
T(n, n) = A341837(n).
EXAMPLE
n\k| 1 2 3 4 5 6 7 8 9 10 11 12 ...
---+--------------------------------------------------------------
1 | 1 -1 -1 0 -1 1 -1 0 0 1 -1 0 ...
2 | 1 -2 -2 1 -2 4 -2 0 1 4 -2 -2 ...
3 | 1 -3 -3 3 -3 9 -3 -1 3 9 -3 -9 ...
4 | 1 -4 -4 6 -4 16 -4 -4 6 16 -4 -24 ...
5 | 1 -5 -5 10 -5 25 -5 -10 10 25 -5 -50 ...
6 | 1 -6 -6 15 -6 36 -6 -20 15 36 -6 -90 ...
7 | 1 -7 -7 21 -7 49 -7 -35 21 49 -7 -147 ...
8 | 1 -8 -8 28 -8 64 -8 -56 28 64 -8 -224 ...
9 | 1 -9 -9 36 -9 81 -9 -84 36 81 -9 -324 ...
10 | 1 -10 -10 45 -10 100 -10 -120 45 100 -10 -450 ...
11 | 1 -11 -11 55 -11 121 -11 -165 55 121 -11 -605 ...
12 | 1 -12 -12 66 -12 144 -12 -220 66 144 -12 -792 ...
13 | 1 -13 -13 78 -13 169 -13 -286 78 169 -13 -1014 ...
14 | 1 -14 -14 91 -14 196 -14 -364 91 196 -14 -1274 ...
15 | 1 -15 -15 105 -15 225 -15 -455 105 225 -15 -1575 ...
...
MATHEMATICA
T[n_, k_] := If[k == 1, 1, Product[(-1)^e Binomial[n, e], {e, FactorInteger[k][[All, 2]]}]];
Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Sep 13 2021 *)
PROG
(Python)
from sympy import binomial, primefactors as pf, multiplicity as mult
from math import prod
def T(n, k):
return prod((-1)**mult(p, k)*binomial(n, mult(p, k)) for p in pf(k))
(PARI) T(n, k) = my(f=factor(k)); for (k=1, #f~, f[k, 1] = binomial(n, f[k, 2])*(-1)^f[k, 2]; f[k, 2]=1); factorback(f); \\ Michel Marcus, Aug 21 2021
CROSSREFS
Main diagonal gives A341837.
KEYWORD
sign,tabl
AUTHOR
Sebastian Karlsson, Aug 20 2021
STATUS
approved
A343662 Irregular triangle read by rows where T(n,k) is the number of strict length k chains of divisors of n, 0 <= k <= Omega(n) + 1. +10
7
1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 4, 5, 2, 1, 2, 1, 1, 4, 6, 4, 1, 1, 3, 3, 1, 1, 4, 5, 2, 1, 2, 1, 1, 6, 12, 10, 3, 1, 2, 1, 1, 4, 5, 2, 1, 4, 5, 2, 1, 5, 10, 10, 5, 1, 1, 2, 1, 1, 6, 12, 10, 3, 1, 2, 1, 1, 6, 12, 10, 3, 1, 4, 5, 2, 1, 4, 5, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
LINKS
EXAMPLE
Triangle begins:
1: 1 1
2: 1 2 1
3: 1 2 1
4: 1 3 3 1
5: 1 2 1
6: 1 4 5 2
7: 1 2 1
8: 1 4 6 4 1
9: 1 3 3 1
10: 1 4 5 2
11: 1 2 1
12: 1 6 12 10 3
13: 1 2 1
14: 1 4 5 2
15: 1 4 5 2
16: 1 5 10 10 5 1
For example, row n = 12 counts the following chains:
() (1) (2/1) (4/2/1) (12/4/2/1)
(2) (3/1) (6/2/1) (12/6/2/1)
(3) (4/1) (6/3/1) (12/6/3/1)
(4) (4/2) (12/2/1)
(6) (6/1) (12/3/1)
(12) (6/2) (12/4/1)
(6/3) (12/4/2)
(12/1) (12/6/1)
(12/2) (12/6/2)
(12/3) (12/6/3)
(12/4)
(12/6)
MATHEMATICA
Table[Length[Select[Reverse/@Subsets[Divisors[n], {k}], And@@Divisible@@@Partition[#, 2, 1]&]], {n, 15}, {k, 0, PrimeOmega[n]+1}]
CROSSREFS
Column k = 1 is A000005.
Row ends are A008480.
Row lengths are A073093.
Column k = 2 is A238952.
The case from n to 1 is A334996 or A251683 (row sums: A074206).
A non-strict version is A334997 (transpose: A077592).
The case starting with n is A337255 (row sums: A067824).
Row sums are A337256 (nonempty: A253249).
A001055 counts factorizations.
A001221 counts distinct prime factors.
A001222 counts prime factors with multiplicity.
A097805 counts compositions by sum and length.
A122651 counts strict chains of divisors summing to n.
A146291 counts divisors of n with k prime factors (with multiplicity).
A163767 counts length n - 1 chains of divisors of n.
A167865 counts strict chains of divisors > 1 summing to n.
A337070 counts strict chains of divisors starting with superprimorials.
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, May 01 2021
STATUS
approved
A343935 Number of ways to choose a multiset of n divisors of n. +10
4
1, 3, 4, 15, 6, 84, 8, 165, 55, 286, 12, 6188, 14, 680, 816, 4845, 18, 33649, 20, 53130, 2024, 2300, 24, 2629575, 351, 3654, 4060, 237336, 30, 10295472, 32, 435897, 7140, 7770, 8436, 177232627, 38, 10660, 11480, 62891499, 42, 85900584, 44, 1906884, 2118760 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
LINKS
FORMULA
a(n) = ((sigma(n), n)) = binomial(sigma(n) + n - 1, n) where sigma = A000005 and binomial = A007318.
EXAMPLE
The a(1) = 1 through a(5) = 6 multisets:
{1} {1,1} {1,1,1} {1,1,1,1} {1,1,1,1,1}
{1,2} {1,1,3} {1,1,1,2} {1,1,1,1,5}
{2,2} {1,3,3} {1,1,1,4} {1,1,1,5,5}
{3,3,3} {1,1,2,2} {1,1,5,5,5}
{1,1,2,4} {1,5,5,5,5}
{1,1,4,4} {5,5,5,5,5}
{1,2,2,2}
{1,2,2,4}
{1,2,4,4}
{1,4,4,4}
{2,2,2,2}
{2,2,2,4}
{2,2,4,4}
{2,4,4,4}
{4,4,4,4}
MATHEMATICA
multchoo[n_, k_]:=Binomial[n+k-1, k];
Table[multchoo[DivisorSigma[0, n], n], {n, 25}]
PROG
(Python)
from math import comb
from sympy import divisor_count
def A343935(n): return comb(divisor_count(n)+n-1, n) # Chai Wah Wu, Jul 05 2024
CROSSREFS
Diagonal n = k of A343658.
Choosing n divisors of n - 1 gives A343936.
The version for chains of divisors is A343939.
A000005 counts divisors.
A000312 = n^n.
A007318 counts k-sets of elements of {1..n}.
A009998 = n^k (as an array, offset 1).
A059481 counts k-multisets of elements of {1..n}.
A146291 counts divisors of n with k prime factors (with multiplicity).
A253249 counts nonempty chains of divisors of n.
Strict chains of divisors:
- A067824 counts strict chains of divisors starting with n.
- A074206 counts strict chains of divisors from n to 1.
- A251683 counts strict length k + 1 chains of divisors from n to 1.
- A334996 counts strict length-k chains of divisors from n to 1.
- A337255 counts strict length-k chains of divisors starting with n.
- A337256 counts strict chains of divisors of n.
- A343662 counts strict length-k chains of divisors.
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 05 2021
STATUS
approved
A343939 Number of n-chains of divisors of n. +10
4
1, 3, 4, 15, 6, 49, 8, 165, 55, 121, 12, 1183, 14, 225, 256, 4845, 18, 3610, 20, 4851, 484, 529, 24, 73125, 351, 729, 4060, 12615, 30, 29791, 32, 435897, 1156, 1225, 1296, 494209, 38, 1521, 1600, 505981, 42, 79507, 44, 46575, 49726, 2209, 48 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
LINKS
EXAMPLE
The a(1) = 1 through a(5) = 6 chains:
(1) (1/1) (1/1/1) (1/1/1/1) (1/1/1/1/1)
(2/1) (3/1/1) (2/1/1/1) (5/1/1/1/1)
(2/2) (3/3/1) (2/2/1/1) (5/5/1/1/1)
(3/3/3) (2/2/2/1) (5/5/5/1/1)
(2/2/2/2) (5/5/5/5/1)
(4/1/1/1) (5/5/5/5/5)
(4/2/1/1)
(4/2/2/1)
(4/2/2/2)
(4/4/1/1)
(4/4/2/1)
(4/4/2/2)
(4/4/4/1)
(4/4/4/2)
(4/4/4/4)
MATHEMATICA
Table[Length[Select[Tuples[Divisors[n], n], OrderedQ[#]&&And@@Divisible@@@Reverse/@Partition[#, 2, 1]&]], {n, 10}]
CROSSREFS
Diagonal n = k - 1 of the array A077592.
Chains of length n - 1 are counted by A163767.
Diagonal n = k of the array A334997.
The version counting all multisets of divisors (not just chains) is A343935.
A000005(n) counts divisors of n.
A067824(n) counts strict chains of divisors starting with n.
A074206(n) counts strict chains of divisors from n to 1.
A146291(n,k) counts divisors of n with k prime factors (with multiplicity).
A251683(n,k-1) counts strict k-chains of divisors from n to 1.
A253249(n) counts nonempty chains of divisors of n.
A334996(n,k) counts strict k-chains of divisors from n to 1.
A337255(n,k) counts strict k-chains of divisors starting with n.
A343658(n,k) counts k-multisets of divisors of n.
A343662(n,k) counts strict k-chains of divisors of n (row sums: A337256).
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 05 2021
STATUS
approved
page 1 2

Search completed in 0.015 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 29 18:55 EDT 2024. Contains 375518 sequences. (Running on oeis4.)