[go: up one dir, main page]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a163649 -id:a163649
Displaying 1-3 of 3 results found. page 1
     Sort: relevance | references | number | modified | created      Format: long | short | data
A163650 Subswing - the inverse binomial transform of the swinging factorial (A056040). +10
9
1, 0, 1, 2, -9, 44, -165, 594, -2037, 6824, -22437, 72830, -234047, 746316, -2364947, 7455798, -23405085, 73207728, -228275949, 709906518, -2202557691, 6819616020, -21076580511, 65032888998, -200369138571, 616531573224, -1894784517675, 5816886949874 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Analog to the subfactorial A000166.
LINKS
Peter Luschny, Swinging Factorial.
FORMULA
E.g.f.: exp(-x)*BesselI(0,2*x)*(1+x). - Peter Luschny, Aug 26 2012
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k)*(k!/(floor(k/2)!)^2). - G. C. Greubel, Aug 01 2017
a(n) ~ -(-1)^n * sqrt(n) * 3^(n - 1/2) / (2*sqrt(Pi)). - Vaclav Kotesovec, Oct 31 2017
D-finite with recurrence n*a(n) +5*(n-1)*a(n-1) +(n-4)*a(n-2) +(-13*n+23)*a(n-3) +6*(n-3)*a(n-4)=0. - R. J. Mathar, Jul 04 2023
MAPLE
a := proc(n) local k: add((-1)^(n-k)*binomial(n, k)*(k!/iquo(k, 2)!^2), k=0..n) end:
MATHEMATICA
sf[n_] := n!/Quotient[n, 2]!^2; a[n_] := Sum[(-1)^(n-k)*Binomial[n, k]*sf[k], {k, 0, n}]; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Jun 28 2013 *)
PROG
(PARI) for(n=0, 50, print1(sum(k=0, n, (-1)^(n-k)*binomial(n, k)*(k!/((k\2)!)^2)), ", ")) \\ G. C. Greubel, Aug 01 2017
CROSSREFS
Row sums of A163649. Cf. A056040, A000166.
KEYWORD
sign
AUTHOR
Peter Luschny, Aug 02 2009
STATUS
approved
A194586 Triangle read by rows, T(n,k) the coefficients of the polynomials Sum_{k=0..n} binomial(n,k)*A056040(k)*(k mod 2)*q^k. +10
2
0, 0, 1, 0, 2, 0, 0, 3, 0, 6, 0, 4, 0, 24, 0, 0, 5, 0, 60, 0, 30, 0, 6, 0, 120, 0, 180, 0, 0, 7, 0, 210, 0, 630, 0, 140, 0, 8, 0, 336, 0, 1680, 0, 1120, 0, 0, 9, 0, 504, 0, 3780, 0, 5040, 0, 630, 0, 10, 0, 720, 0, 7560, 0, 16800, 0, 6300, 0, 0, 11, 0, 990, 0, 13860, 0, 46200, 0, 34650, 0, 2772, 0, 12 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
Substituting q^k -> 1/(floor(k/2)+1) in the polynomials gives the complementary Motzkin numbers A005717. (See A089627 for the Motzkin numbers and A163649 for the extended Motzkin numbers.)
LINKS
Peter Luschny, The lost Catalan numbers.
FORMULA
egf(x,y) = x*y*exp(x)*BesselI(0,2*x*y).
EXAMPLE
0
0, 1
0, 2, 0
0, 3, 0, 6
0, 4, 0, 24, 0
0, 5, 0, 60, 0, 30
0, 6, 0, 120, 0, 180, 0
0, 7, 0, 210, 0, 630, 0, 140
0
q
2 q
3 q + 6 q^3
4 q + 24 q^3
5 q + 60 q^3 + 30 q^5
6 q + 120 q^3 + 180 q^5
7 q + 210 q^3 + 630 q^5 + 140 q^7
MAPLE
A194586 := proc(n, k) local j, swing; swing := n -> n!/iquo(n, 2)!^2:
add(binomial(n, j)*swing(j)*q^j*(j mod 2), j=0..n); coeff(%, q, k) end:
seq(print(seq(A194586(n, k), k=0..n)), n=0..8);
MATHEMATICA
sf[n_] := n!/Quotient[n, 2]!^2;
row[n_] := Sum[Binomial[n, j] sf[j] q^j Mod[j, 2], {j, 0, n}] // CoefficientList[#, q]& // PadRight[#, n+1]&;
Table[row[n], {n, 0, 12}] (* Jean-François Alcover, Jun 26 2019 *)
CROSSREFS
Row sums are A109188. Cf. A056040, A005717, A163649, A089627.
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Aug 29 2011
STATUS
approved
A163945 Triangle interpolating between (-1)^n (A033999) and the swinging factorial function (A056040) restricted to odd indices (2n+1)$ (A002457). +10
0
1, -1, 6, 1, -12, 30, -1, 18, -90, 140, 1, -24, 180, -560, 630, -1, 30, -300, 1400, -3150, 2772, 1, -36, 450, -2800, 9450, -16632, 12012, -1, 42, -630, 4900, -22050, 58212, -84084, 51480, 1, -48, 840, -7840, 44100, -155232, 336336, -411840, 218790 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Triangle read by rows.
For n >= 0, k >= 0 let T(n, k) = (-1)^(n-k) binomial(n,k) (2*k+1)$ where i$ denotes the swinging factorial of i (A056040).
LINKS
Peter Luschny, Swinging Factorial.
FORMULA
Conjectural g.f.: sqrt(1 + t)/(1 + (1 - 4*x)*t)^(3/2) = 1 + (-1 + 6*x)*t + (1 - 12*x + 30*x^2)*t^2 + .... - Peter Bala, Nov 10 2013
T(n, k) = ((-1)^(k mod 2) + n)*((2*k + 1)!/(k!)^2)*binomial(n, n - k). - Detlef Meya, Oct 07 2023
EXAMPLE
1;
-1, 6;
1, -12, 30;
-1, 18, -90, 140;
1, -24, 180, -560, 630;
-1, 30, -300, 1400, -3150, 2772;
1, -36, 450, -2800, 9450, -16632, 12012;
MAPLE
swing := proc(n) option remember; if n = 0 then 1 elif
irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
a := proc(n, k) (-1)^(n-k)*binomial(n, k)*swing(2*k+1) end:
seq(print(seq(a(n, k), k=0..n)), n=0..8);
MATHEMATICA
From Detlef Meya, Oct 07 2023: (Start)
T[n_, k_] := ((-1)^(Mod[k, 2]+n)*((2*k+1)!/(k!)^2)*Binomial[n, n-k]);
Flatten[Table[T[n, k], {n, 0, 8}, {k, 0, n}]] (*End*)
CROSSREFS
Row sums are the inverse binomial transform of the beta numbers (A163872).
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Aug 07 2009
STATUS
approved
page 1

Search completed in 0.009 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 30 05:37 EDT 2024. Contains 375526 sequences. (Running on oeis4.)