[go: up one dir, main page]

login
Search: a158371 -id:a158371
     Sort: relevance | references | number | modified | created      Format: long | short | data
576n - 1.
+10
2
575, 1151, 1727, 2303, 2879, 3455, 4031, 4607, 5183, 5759, 6335, 6911, 7487, 8063, 8639, 9215, 9791, 10367, 10943, 11519, 12095, 12671, 13247, 13823, 14399, 14975, 15551, 16127, 16703, 17279, 17855, 18431, 19007, 19583, 20159, 20735, 21311
OFFSET
1,1
COMMENTS
The identity (576*n-1)^2-(576*n^2-2*n)*(24)^2=1 can be written as a(n)^2-A158371(n)*(24)^2=1.
LINKS
Vincenzo Librandi, X^2-AY^2=1
E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(24^2*t-2)).
FORMULA
a(n) = 2*a(n-1)-a(n-2).
G.f.: x*(575+x)/(1-x)^2.
MATHEMATICA
LinearRecurrence[{2, -1}, {575, 1151}, 50]
576*Range[40]-1 (* Harvey P. Dale, Dec 15 2017 *)
PROG
(Magma) I:=[575, 1151]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]];
(PARI) a(n) = 576*n - 1.
CROSSREFS
Cf. A158371.
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 17 2009
STATUS
approved

Search completed in 0.011 seconds