[go: up one dir, main page]

login
Search: a155594 -id:a155594
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = 8^n - 2^n + 1^n.
+10
33
1, 7, 61, 505, 4081, 32737, 262081, 2097025, 16776961, 134217217, 1073740801, 8589932545, 68719472641, 549755805697, 4398046494721, 35184372056065, 281474976645121, 2251799813554177, 18014398509219841, 144115188075331585
OFFSET
0,2
FORMULA
G.f.: 1/(1-8*x) - 1/(1-2*x) + 1/(1-x).
E.g.f.: e^(8*x) - e^(2*x) + e^x.
a(n) = 10*a(n-1) - 16*a(n-2) + 7 with a(0)=1, a(1)=7 - Vincenzo Librandi, Jul 21 2010
a(n) = A248217(n)+1. - R. J. Mathar, Mar 10 2022
MATHEMATICA
Table[8^n-2^n+1, {n, 0, 30}] (* or *) LinearRecurrence[{11, -26, 16}, {1, 7, 61}, 30] (* Harvey P. Dale, Feb 25 2014 *)
PROG
(PARI) a(n)=8^n-2^n+1 \\ Charles R Greathouse IV, Sep 24 2015
KEYWORD
nonn,easy
AUTHOR
Mohammad K. Azarian, Jan 25 2009
STATUS
approved
a(n) = 5^n - 2^n + 1^n.
+10
30
1, 4, 22, 118, 610, 3094, 15562, 77998, 390370, 1952614, 9764602, 48826078, 244136530, 1220694934, 6103499242, 30517545358, 152587825090, 762939322054, 3814697003482, 19073485803838, 95367430592050, 476837156105974
OFFSET
0,2
FORMULA
G.f.: 1/(1-5*x)-1/(1-2*x)+1/(1-x).
E.g.f.: e^(5*x) - e^(2*x) + e^x.
a(n) = 7*a(n-1)-10*a(n-2)+4 with a(0)=1, a(1)=4. - Vincenzo Librandi, Jul 21 2010
a(n) = A005057(n)+1. - R. J. Mathar, Mar 10 2022
MATHEMATICA
Table[5^n-2^n+1, {n, 0, 30}] (* or *) LinearRecurrence[{8, -17, 10}, {1, 4, 22}, 30] (* Harvey P. Dale, Sep 11 2019 *)
PROG
(PARI) a(n)=5^n-2^n+1 \\ Charles R Greathouse IV, Sep 24 2015
KEYWORD
nonn,easy
AUTHOR
Mohammad K. Azarian, Jan 25 2009
STATUS
approved
a(n) = 6^n - 2^n + 1.
+10
27
1, 5, 33, 209, 1281, 7745, 46593, 279809, 1679361, 10077185, 60465153, 362795009, 2176778241, 13060685825, 78364147713, 470184951809, 2821109841921, 16926659313665, 101559956406273, 609359739486209, 3656158439014401, 21936950638280705, 131621703838072833
OFFSET
0,2
FORMULA
G.f.: 1/(1-6*x)-1/(1-2*x)+1/(1-x).
E.g.f.: exp(6*x)-exp(2*x)+exp(x).
a(n) = 8*a(n-1)-12*a(n-2)+5 with a(0)=1, a(1)=5. - Vincenzo Librandi, Jul 21 2010
a(0)=1, a(1)=5, a(2)=33, a(n) = 9*a(n-1)-20*a(n-2)+12*a(n-3). - Harvey P. Dale, Jul 13 2011
a(n) = A248216(n)+1. - R. J. Mathar, Mar 10 2022
MATHEMATICA
Table[6^n-2^n+1, {n, 0, 20}] (* or *) LinearRecurrence[{9, -20, 12}, {1, 5, 33}, 20] (* Harvey P. Dale, Jul 13 2011 *)
PROG
(PARI) a(n) = 6^n-2^n+1 \\ Charles R Greathouse IV, Jul 25 2011
KEYWORD
nonn,easy
AUTHOR
Mohammad K. Azarian, Jan 25 2009
STATUS
approved
a(n) = 9^n-2^n+1^n.
+10
27
1, 8, 78, 722, 6546, 59018, 531378, 4782842, 43046466, 387419978, 3486783378, 31381057562, 282429532386, 2541865820138, 22876792438578, 205891132061882, 1853020188786306, 16677181699535498, 150094635296736978
OFFSET
0,2
FORMULA
G.f.: 1/(1-9*x)-1/(1-2*x)+1/(1-x). E.g.f.: e^(9*x)-e^(2*x)+e^x.
a(n) = 11*a(n-1)-18*a(n-2)+8 with a(0)=1, a(1)=8 - Vincenzo Librandi, Jul 21 2010
a(n) = A191465(n)+1. - R. J. Mathar, Mar 10 2022
MATHEMATICA
Table[9^n - 2^n + 1, {n, 0, 25}] (* or *)
LinearRecurrence[{12, -29, 18}, {1, 8, 78}, 26] (* Paolo Xausa, Jul 19 2024 *)
PROG
(PARI) a(n)=9^n-2^n+1 \\ Charles R Greathouse IV, Sep 24 2015
KEYWORD
nonn,easy
AUTHOR
Mohammad K. Azarian, Jan 25 2009
STATUS
approved
a(n) = 7^n-2^n+1.
+10
26
1, 6, 46, 336, 2386, 16776, 117586, 823416, 5764546, 40353096, 282474226, 1977324696, 13841283106, 96889002216, 678223056466, 4747561477176, 33232930504066, 232630513856136, 1628413597648306, 11398895184848856
OFFSET
0,2
FORMULA
G.f.: 1/(1-7*x)-1/(1-2*x)+1/(1-x). E.g.f.: e^(7*x)-e^(2*x)+e^x.
a(n) = 9*a(n-1)-14*a(n-2)+6 with a(0)=1, a(1)=6 - Vincenzo Librandi, Jul 21 2010
a(0)=1, a(1)=6, a(2)=46, a(n) = 10*a(n-1)-23*a(n-2)+14*a(n-3). - Harvey P. Dale, Feb 28 2013
a(n) = A190540(n)+1. - R. J. Mathar, Mar 10 2022
MATHEMATICA
Table[7^n-2^n+1, {n, 0, 20}] (* or *) LinearRecurrence[{10, -23, 14}, {1, 6, 46}, 20] (* Harvey P. Dale, Feb 28 2013 *)
PROG
(PARI) a(n)=7^n-2^n+1 \\ Charles R Greathouse IV, Sep 24 2015
KEYWORD
nonn,easy
AUTHOR
Mohammad K. Azarian, Jan 25 2009
STATUS
approved
a(n) = 10^n - 2^n + 1^n.
+10
26
1, 9, 97, 993, 9985, 99969, 999937, 9999873, 99999745, 999999489, 9999998977, 99999997953, 999999995905, 9999999991809, 99999999983617, 999999999967233, 9999999999934465, 99999999999868929, 999999999999737857, 9999999999999475713, 99999999999998951425
OFFSET
0,2
FORMULA
G.f.: 1/(1-10*x)-1/(1-2*x)+1/(1-x).
E.g.f.: e^(10*x)-e^(2*x)+e^x.
a(n) = 12*a(n-1)-20*a(n-2)+9 with a(0)=1, a(1)=9. - Vincenzo Librandi, Jul 21 2010
a(n) = A060458(n)+1. - R. J. Mathar, Mar 10 2022
MATHEMATICA
Table[10^n-2^n+1, {n, 0, 20}] (* or *) LinearRecurrence[{13, -32, 20}, {1, 9, 97}, 20] (* Harvey P. Dale, Jan 13 2022 *)
PROG
(PARI) a(n)=10^n-2^n+1 \\ Charles R Greathouse IV, Sep 24 2015
KEYWORD
nonn,easy
AUTHOR
Mohammad K. Azarian, Jan 25 2009
STATUS
approved
11^n-3^n+1.
+10
16
1, 9, 113, 1305, 14561, 160809, 1770833, 19484985, 214352321, 2357928009, 25937365553, 285311493465, 3138427845281, 34522710549609, 379749828800273, 4177248155066745, 45949729820525441, 505447028370153609
OFFSET
0,2
FORMULA
G.f.: 1/(1-11*x)-1/(1-3*x)+1/(1-x). E.g.f.: e^(11*x)-e^(3*x)+e^x.
a(n)=14*a(n-1)-33*a(n-2)+20 with a(0)=1, a(1)=9 - Vincenzo Librandi, Jul 21 2010
MATHEMATICA
LinearRecurrence[{15, -47, 33}, {1, 9, 113}, 20] (* Harvey P. Dale, Nov 02 2021 *)
PROG
(PARI) a(n)=11^n-3^n+1 \\ Charles R Greathouse IV, Jun 11 2015
KEYWORD
nonn,easy
AUTHOR
Mohammad K. Azarian, Jan 29 2009
STATUS
approved
a(n) = 11^n + 4^n - 1.
+10
16
1, 14, 136, 1394, 14896, 162074, 1775656, 19503554, 214424416, 2358209834, 25938473176, 285315864914, 3138445153936, 34522779252794, 379750102018696, 4177249243157474, 45949734158539456, 505447045679162954, 5559917382211708216, 61159090723292453234, 672749996032071636976
OFFSET
0,2
FORMULA
G.f.: 1/(1-11*x)+1/(1-4*x)-1/(1-x).
E.g.f.: exp(11*x)+exp(4*x)-exp(x).
a(n) = 15*a(n-1)-44*a(n-2)-30 with a(0) = 1, a(1) = 14. - Vincenzo Librandi, Jul 21 2010
MATHEMATICA
Table[11^n + 4^n - 1, {n, 0, 25}] (* Paolo Xausa, Jul 30 2024 *)
PROG
(PARI) a(n)=11^n+4^n-1 \\ Charles R Greathouse IV, Jun 11 2015
KEYWORD
nonn,easy
AUTHOR
Mohammad K. Azarian, Jan 29 2009
STATUS
approved
a(n) = 5^n-4^n+1.
+10
15
1, 2, 10, 62, 370, 2102, 11530, 61742, 325090, 1690982, 8717050, 44633822, 227363410, 1153594262, 5835080170, 29443836302, 148292923330, 745759583942, 3745977788890, 18798608421182, 94267920012850, 472439111692022
OFFSET
0,2
FORMULA
G.f.: 1/(1-5*x)-1/(1-4*x)+1/(1-x).
E.g.f.: e^(5*x)-e^(4*x)+e^x.
a(n) = 9*a(n-1)-20*a(n-2)+12 with a(0)=1, a(1)=2. - Vincenzo Librandi, Jul 21 2010
a(n) = 10*a(n-1)-29*a(n-2)+20*a(n-3). - Wesley Ivan Hurt, Jun 07 2021
MATHEMATICA
Table[5^n-4^n+1, {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 15 2011*)
LinearRecurrence[{10, -29, 20}, {1, 2, 10}, 30] (* Harvey P. Dale, Oct 11 2023 *)
PROG
(PARI) a(n)=5^n-4^n+1 \\ Charles R Greathouse IV, Jun 11 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Mohammad K. Azarian, Jan 29 2009
STATUS
approved
4^n + 3^n - 1.
+10
13
1, 6, 24, 90, 336, 1266, 4824, 18570, 72096, 281826, 1107624, 4371450, 17308656, 68703186, 273218424, 1088090730, 4338014016, 17309009346, 69106897224, 276040168410, 1102998412176, 4408506864306, 17623567104024, 70462887356490
OFFSET
0,2
FORMULA
G.f.: 1/(1-4*x)+1/(1-3*x)-1/(1-x). E.g.f.: e^(4*x)+e^(3*x)-e^x.
a(n) = 7*a(n-1) - 12*a(n-2) -6, n>1 - Gary Detlefs, Jun 21 2010
a(n) = 8*a(n-1) - 19*a(n-2) + 12*a(n-3), n>2, a(0)=1, a(1)=6, a(2)=24. - L. Edson Jeffery, Oct 17 2012
a(n) = A074605(n)-1. - R. J. Mathar, Mar 10 2022
MATHEMATICA
Table[4^n + 3^n - 1, {n, 0, 50}] (* Vincenzo Librandi, Oct 17 2012 *)
LinearRecurrence[{8, -19, 12}, {1, 6, 24}, 30] (* Harvey P. Dale, Apr 28 2018 *)
PROG
(Magma) [(4^n + 3^n - 1): n in [0..30]]; // Vincenzo Librandi, Oct 17 2012
(PARI) a(n)=4^n+3^n-1 \\ Charles R Greathouse IV, Sep 24 2015
KEYWORD
nonn,easy
AUTHOR
Mohammad K. Azarian, Jan 25 2009
STATUS
approved

Search completed in 0.008 seconds