[go: up one dir, main page]

login
Search: a154690 -id:a154690
     Sort: relevance | references | number | modified | created      Format: long | short | data
Sequence A154690 adjusted to leading one:t(n,m)=A154690(n,m)-A154690(n,0)+1
+20
0
1, 1, 1, 1, 4, 1, 1, 10, 10, 1, 1, 24, 32, 24, 1, 1, 58, 88, 88, 58, 1, 1, 140, 236, 256, 236, 140, 1, 1, 334, 628, 712, 712, 628, 334, 1, 1, 784, 1648, 1984, 1984, 1984, 1648, 784, 1, 1, 1810, 4240, 5536, 5536, 5536, 5536, 4240, 1810, 1, 1, 4116, 10676, 15296, 15776
OFFSET
0,5
COMMENTS
Row sums are:
1, 2, 6, 22, 82, 294, 1010, 3350, 10818, 34246, 106834,...
FORMULA
t(n,m)=A154690(n,m)-A154690(n,0)+1
EXAMPLE
{1},
{1, 1},
{1, 4, 1},
{1, 10, 10, 1},
{1, 24, 32, 24, 1},
{1, 58, 88, 88, 58, 1},
{1, 140, 236, 256, 236, 140, 1},
{1, 334, 628, 712, 712, 628, 334, 1},
{1, 784, 1648, 1984, 1984, 1984, 1648, 784, 1},
{1, 1810, 4240, 5536, 5536, 5536, 5536, 4240, 1810, 1},
{1, 4116, 10676, 15296, 15776, 15104, 15776, 15296, 10676, 4116, 1}
MATHEMATICA
a = 2; b = 1;
t[n_, m_] = (a^m*b^(n - m) + b^m*a^(n - m))*Binomial[n, m];
Table[Table[t[n, m] - t[n, 0] + 1, {m, 0, n}], {n, 0, 10}];
Flatten[%]
CROSSREFS
A154690(n, m)
KEYWORD
nonn,tabl,uned
AUTHOR
Roger L. Bagula, Mar 26 2010
STATUS
approved
Triangle read by rows: T(n,m)=A154694(n,m)-A154694(n,0)+1.
+10
1
1, 1, 1, 1, 36, 1, 1, 296, 296, 1, 1, 1932, 4656, 1932, 1, 1, 11696, 54086, 54086, 11696, 1, 1, 69048, 556596, 1042920, 556596, 69048, 1, 1, 405236, 5406866, 16866206, 16866206, 5406866, 405236, 1, 1, 2381700, 51004320, 247754256, 404837664
OFFSET
0,5
COMMENTS
Reduces the values in the triangle A154694 such that each row starts with 1.
Row sums are:
1, 2, 38, 594, 8522, 131566, 2294210, 45356618, 1007118218, 24839902470,
673894929842,...
FORMULA
t(n,m)=A154694(n,m)-A154694(n,0)+1
EXAMPLE
{1},
{1, 1},
{1, 36, 1},
{1, 296, 296, 1},
{1, 1932, 4656, 1932, 1},
{1, 11696, 54086, 54086, 11696, 1},
{1, 69048, 556596, 1042920, 556596, 69048, 1},
{1, 405236, 5406866, 16866206, 16866206, 5406866, 405236, 1},
{1, 2381700, 51004320, 247754256, 404837664, 247754256, 51004320, 2381700, 1},
{1, 14050376, 473595806, 3441231326, 8491073726, 8491073726, 3441231326, 473595806, 14050376, 1},
{1, 83216400, 4357421004, 46167420504, 164067684600, 244543444824, 164067684600, 46167420504, 4357421004, 83216400, 1}
MAPLE
A174673 := proc(n, m)
A154694(n, m)-A154694(n, 0)+1 ;
end proc:
seq(seq( A174673(n, m), m=0..n), n=0..10) ; # R. J. Mathar, Mar 11 2024
MATHEMATICA
Clear[t, p, q, n, m];
p = 2; q = 3;
t[n_, m_] = (p^(n - m)*q^m + p^m*q^( n - m))*Sum[(-1)^j*Binomial[n + 2, j]*(m - j + 1)^(n + 1), {j, 0, m + 1}];
Table[Table[t[n, m] - t[n, 0] + 1, {m, 0, n}], {n, 0, 10}];
Flatten[%]
KEYWORD
nonn,tabl,less
AUTHOR
Roger L. Bagula, Mar 26 2010
STATUS
approved
Sequence A154693 adjusted to leading one:t(n,m)=A154693(n,m)-A154693(n,0)+1
+10
0
1, 1, 1, 1, 12, 1, 1, 58, 58, 1, 1, 244, 512, 244, 1, 1, 994, 3592, 3592, 994, 1, 1, 4016, 23756, 38592, 23756, 4016, 1, 1, 16174, 154420, 374728, 374728, 154420, 16174, 1, 1, 65004, 993088, 3529104, 4997824, 3529104, 993088, 65004, 1, 1, 260842, 6314368
OFFSET
0,5
COMMENTS
Row sums are:
1, 2, 14, 118, 1002, 9174, 94138, 1090646, 14172218, 204490006, 3245253882,...
FORMULA
t(n,m)=A154693(n,m)-A154693(n,0)+1
EXAMPLE
{1},
{1, 1},
{1, 12, 1},
{1, 58, 58, 1},
{1, 244, 512, 244, 1},
{1, 994, 3592, 3592, 994, 1},
{1, 4016, 23756, 38592, 23756, 4016, 1},
{1, 16174, 154420, 374728, 374728, 154420, 16174, 1},
{1, 65004, 993088, 3529104, 4997824, 3529104, 993088, 65004, 1},
{1, 260842, 6314368, 32773312, 62896480, 62896480, 32773312, 6314368, 260842, 1},
{1, 1045480, 39684596, 299673344, 779048096, 1006350848, 779048096, 299673344, 39684596, 1045480, 1}
MATHEMATICA
Clear[t, p, q, n, m];
p = 2; q = 1;
t[n_, m_] = (p^(n - m)*q^m + p^m*q^( n - m))*Sum[(-1)^j*Binomial[n + 2, j]*(m - j + 1)^(n + 1), {j, 0, m + 1}];
Table[Table[t[n, m] - t[n, 0] + 1, {m, 0, n}], {n, 0, 10}];
Flatten[%]
CROSSREFS
KEYWORD
nonn,tabl,uned
AUTHOR
Roger L. Bagula, Mar 26 2010
STATUS
approved
Sequence A154695 adjusted to leading one:t(n,m)=A154695(n,m)-A154695(n,0)+1
+10
0
1, 1, 1, 1, 20, 1, 1, 130, 130, 1, 1, 744, 1824, 744, 1, 1, 4234, 20152, 20152, 4234, 1, 1, 24484, 210796, 376704, 210796, 24484, 1, 1, 143686, 2183524, 6233224, 6233224, 2183524, 143686, 1, 1, 851504, 22549360, 99411264, 149600192, 99411264
OFFSET
0,5
COMMENTS
Row sums are:
1, 2, 22, 262, 3314, 48774, 847266, 17120870, 395224450, 10263445126,
296140564130,...
FORMULA
t(n,m)=A154695(n,m)-A154695(n,0)+1
EXAMPLE
{1},
{1, 1},
{1, 20, 1},
{1, 130, 130, 1},
{1, 744, 1824, 744, 1},
{1, 4234, 20152, 20152, 4234, 1},
{1, 24484, 210796, 376704, 210796, 24484, 1},
{1, 143686, 2183524, 6233224, 6233224, 2183524, 143686, 1},
{1, 851504, 22549360, 99411264, 149600192, 99411264, 22549360, 851504, 1},
{1, 5075122, 231836368, 1562973472, 3331837600, 3331837600, 1562973472, 231836368, 5075122, 1},
{1, 30344508, 2370195636, 24248921920, 72553861536, 97733916928, 72553861536, 24248921920, 2370195636, 30344508, 1}
MATHEMATICA
Clear[t, p, q, n, m, a];
p[x_, n_] = 2^n*(1 - x)^(n + 1)*LerchPhi[x, -n, 1/2];
a = Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}];
p = 2; q = 1;
t[n_, m_] := (p^(n - m)*q^m + p^m*q^(n - m))*a[[n + 1]][[m + 1]];
Table[Table[t[n, m] - t[n, 0] + 1, {m, 0, n}], {n, 0, 10}];
Flatten[%]
KEYWORD
nonn,tabl,uned
AUTHOR
Roger L. Bagula, Mar 26 2010
STATUS
approved
Sequence A154696 adjusted to leading one:t(n,m)=A154696(n,m)-A154696(n,0)+1
+10
0
1, 1, 1, 1, 60, 1, 1, 656, 656, 1, 1, 5832, 16464, 5832, 1, 1, 49496, 302486, 302486, 49496, 1, 1, 419412, 4933332, 10171944, 4933332, 419412, 1, 1, 3593036, 76425506, 280498526, 280498526, 76425506, 3593036, 1, 1, 31167600, 1157982288
OFFSET
0,5
COMMENTS
Row sums are:
1, 2, 62, 1314, 28130, 703966, 20877434, 721034138, 28453293026,
1263142713270, 62305874244266,...
FORMULA
t(n,m)=A154696(n,m)-A154696(n,0)+1
EXAMPLE
{1},
{1, 1},
{1, 60, 1},
{1, 656, 656, 1},
{1, 5832, 16464, 5832, 1},
{1, 49496, 302486, 302486, 49496, 1},
{1, 419412, 4933332, 10171944, 4933332, 419412, 1},
{1, 3593036, 76425506, 280498526, 280498526, 76425506, 3593036, 1},
{1, 31167600, 1157982288, 6978681888, 12117629472, 6978681888, 1157982288, 31167600, 1},
{1, 273237776, 17387745806, 164112248126, 449798124926, 449798124926, 164112248126, 17387745806, 273237776, 1},
{1, 2414712204, 260247533196, 3735760480536, 15279843395064, 23749342002264, 15279843395064, 3735760480536, 260247533196, 2414712204, 1}
MATHEMATICA
Clear[t, p, q, n, m, a];
p[x_, n_] = 2^n*(1 - x)^(n + 1)*LerchPhi[x, -n, 1/2];
a = Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}];
p = 2; q = 3;
t[n_, m_] := (p^(n - m)*q^m + p^m*q^(n - m))*a[[n + 1]][[m + 1]];
Table[Table[t[n, m] - t[n, 0] + 1, {m, 0, n}], {n, 0, 10}];
Flatten[%]
KEYWORD
nonn,tabl,uned
AUTHOR
Roger L. Bagula, Mar 26 2010
STATUS
approved

Search completed in 0.009 seconds