[go: up one dir, main page]

login
Search: a153651 -id:a153651
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle T(n, k, j) = T(n-1, k, j) + T(n-1, k-1, j) + (2*j + 1)*prime(j)*T(n-2, k-1, j) with T(2, k, j) = prime(j) and j = 10, read by rows.
+10
14
2, 29, 29, 2, 1678, 2, 2, 24387, 24387, 2, 2, 25607, 1070676, 25607, 2, 2, 26827, 15947966, 15947966, 26827, 2, 2, 28047, 31569456, 683937616, 31569456, 28047, 2, 2, 29267, 47935146, 10427818366, 10427818366, 47935146, 29267, 2, 2, 30487, 65045036, 29701552216, 437373644876, 29701552216, 65045036, 30487, 2
OFFSET
1,1
FORMULA
T(n, k, j) = T(n-1, k, j) + T(n-1, k-1, j) + (2*j + 1)*prime(j)*T(n-2, k-1, j) with T(2, k, j) = prime(j), T(3, 2, j) = 2*prime(j)^2 - 4, T(4, 2, j) = T(4, 3, j) = prime(j)^2 - 2, T(n, 1, j) = T(n, n, j) = 2 and j = 10.
From G. C. Greubel, Mar 04 2021: (Start)
Sum_{k=0..n} T(n, k, 10) = -(76/147)*[n=0] - (116/7)*[n=1] + 1682*(i*sqrt(609))^(n-2)*(ChebyshevU(n-2, -i/sqrt(609)) - (27*i/sqrt(609))*ChebyshevU(n-3, -i/sqrt(609) )).
Row sums satisfy the recurrence S(n) = 2*S(n-1) + 609*S(n-2) for n>4 with S(0) = 2, S(1) = 58, S(2) = 1682, S(3) = 48778. (End)
EXAMPLE
Triangle begins as:
2;
29, 29;
2, 1678, 2;
2, 24387, 24387, 2;
2, 25607, 1070676, 25607, 2;
2, 26827, 15947966, 15947966, 26827, 2;
2, 28047, 31569456, 683937616, 31569456, 28047, 2;
2, 29267, 47935146, 10427818366, 10427818366, 47935146, 29267, 2;
2, 30487, 65045036, 29701552216, 437373644876, 29701552216, 65045036, 30487, 2;
MATHEMATICA
T[n_, k_, j_]:= T[n, k, j]= If[n==2, Prime[j], If[n==3 && k==2 || n==4 && 2<=k<=3, ((3-(-1)^n)/2)*Prime[j]^(n-1) -2^((3-(-1)^n)/2), If[k==1 || k==n, 2, T[n-1, k, j] + T[n-1, k-1, j] + (2*j+1)*Prime[j]*T[n-2, k-1, j] ]]];
Table[T[n, k, 10], {n, 12}, {k, n}]//Flatten (* modified by G. C. Greubel, Mar 03 2021 *)
PROG
(Sage)
@CachedFunction
def f(n, j): return ((3-(-1)^n)/2)*nth_prime(j)^(n-1) - 2^((3-(-1)^n)/2)
def T(n, k, j):
if (n==2): return nth_prime(j)
elif (n==3 and k==2 or n==4 and 2<=k<=3): return f(n, j)
elif (k==1 or k==n): return 2
else: return T(n-1, k, j) + T(n-1, k-1, j) + (2*j+1)*nth_prime(j)*T(n-2, k-1, j)
flatten([[T(n, k, 10) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 03 2021
(Magma)
f:= func< n, j | Round(((3-(-1)^n)/2)*NthPrime(j)^(n-1) - 2^((3-(-1)^n)/2)) >;
function T(n, k, j)
if n eq 2 then return NthPrime(j);
elif (n eq 3 and k eq 2 or n eq 4 and k eq 2 or n eq 4 and k eq 3) then return f(n, j);
elif (k eq 1 or k eq n) then return 2;
else return T(n-1, k, j) + T(n-1, k-1, j) + (2*j+1)*NthPrime(j)*T(n-2, k-1, j);
end if; return T;
end function;
[T(n, k, 10): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 03 2021
CROSSREFS
Cf. A153652 (j=7), A153653 (j=8), A153654 (j=9), this sequence (j=10).
KEYWORD
nonn,tabl,easy,less
AUTHOR
Roger L. Bagula, Dec 30 2008
EXTENSIONS
Edited by G. C. Greubel, Mar 03 2021
STATUS
approved
Triangle T(n, k) = T(n-1, k) + T(n-1, k-1) + (2*j +3)*prime(j)*T(n-2, k-1) with j=9, read by rows.
+10
14
2, 23, 23, 2, 1054, 2, 2, 12165, 12165, 2, 2, 13133, 533412, 13133, 2, 2, 14101, 6422240, 6422240, 14101, 2, 2, 15069, 12779580, 270482476, 12779580, 15069, 2, 2, 16037, 19605432, 3385203976, 3385203976, 19605432, 16037, 2, 2, 17005, 26899796, 9577346548, 137413443860, 9577346548, 26899796, 17005, 2
OFFSET
1,1
FORMULA
T(n, k) = T(n-1, k) + T(n-1, k-1) + (2*j +3)*prime(j)*T(n-2, k-1) with j=9.
From G. C. Greubel, Mar 06 2021: (Start)
T(n,k,p,q,j) = T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*prime(j)*T(n-2,k-1,p,q,j) with T(2,k,p,q,j) = prime(j), T(3,2,p,q,j) = 2*prime(j)^2 -4, T(4,2,p,q,j) = T(4,3,p,q,j) = prime(j)^2 -2, T(n,1,p,q,j) = T(n,n,p,q,j) = 2 and (p,q,j) = (2,3,9).
Sum_{k=0..n} T(n,k,p,q,j) = 2*prime(j)^(n-1), for (p,q,j)=(2,3,9), = 2*A009967(n-1). (End)
EXAMPLE
Triangle begins as:
2;
23, 23;
2, 1054, 2;
2, 12165, 12165, 2;
2, 13133, 533412, 13133, 2;
2, 14101, 6422240, 6422240, 14101, 2;
2, 15069, 12779580, 270482476, 12779580, 15069, 2;
2, 16037, 19605432, 3385203976, 3385203976, 19605432, 16037, 2;
2, 17005, 26899796, 9577346548, 137413443860, 9577346548, 26899796, 17005, 2;
MATHEMATICA
T[n_, k_, p_, q_, j_]:= T[n, k, p, q, j]= If[n==2, Prime[j], If[n==3 && k==2 || n==4 && 2<=k<=3, ((3-(-1)^n)/2)*Prime[j]^(n-1) -2^((3-(-1)^n)/2), If[k==1 || k==n, 2, T[n-1, k, p, q, j] + T[n-1, k-1, p, q, j] + (p*j+q)*Prime[j]*T[n-2, k-1, p, q, j] ]]];
Table[T[n, k, 2, 3, 9], {n, 12}, {k, n}]//Flatten (* modified by G. C. Greubel, Mar 06 2021 *)
PROG
(Sage)
@CachedFunction
def f(n, j): return ((3-(-1)^n)/2)*nth_prime(j)^(n-1) - 2^((3-(-1)^n)/2)
def T(n, k, p, q, j):
if (n==2): return nth_prime(j)
elif (n==3 and k==2 or n==4 and 2<=k<=3): return f(n, j)
elif (k==1 or k==n): return 2
else: return T(n-1, k, p, q, j) + T(n-1, k-1, p, q, j) + (p*j+q)*nth_prime(j)*T(n-2, k-1, p, q, j)
flatten([[T(n, k, 2, 3, 9) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 06 2021
(Magma)
f:= func< n, j | Round(((3-(-1)^n)/2)*NthPrime(j)^(n-1) - 2^((3-(-1)^n)/2)) >;
function T(n, k, p, q, j)
if n eq 2 then return NthPrime(j);
elif (n eq 3 and k eq 2 or n eq 4 and k eq 2 or n eq 4 and k eq 3) then return f(n, j);
elif (k eq 1 or k eq n) then return 2;
else return T(n-1, k, p, q, j) + T(n-1, k-1, p, q, j) + (p*j+q)*NthPrime(j)*T(n-2, k-1, p, q, j);
end if; return T;
end function;
[T(n, k, 2, 3, 9): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 06 2021
CROSSREFS
Sequences with variable (p,q,j): A153516 (0,1,2), A153518 (0,1,3), A153520 (0,1,4), A153521 (0,1,5), A153648 (1,0,3), A153649 (1,1,4), A153650 (1,4,5), A153651 (1,5,6), A153652 (2,1,7), A153653 (2,1,8), A153654 (2,1,9), A153655 (2,1,10), this sequence (2,3,9), A153657 (2,7,10).
Cf. A009967 (powers of 23).
KEYWORD
nonn,tabl,easy,less
AUTHOR
Roger L. Bagula, Dec 30 2008
EXTENSIONS
Edited by G. C. Greubel, Mar 06 2021
STATUS
approved
Triangle T(n, k) = T(n-1, k) + T(n-1, k-1) + (2*j +7)*prime(j)*T(n-2, k-1) with j=10, read by rows.
+10
14
2, 29, 29, 2, 1678, 2, 2, 24387, 24387, 2, 2, 25955, 1362648, 25955, 2, 2, 27523, 20483624, 20483624, 27523, 2, 2, 29091, 40833912, 1107920632, 40833912, 29091, 2, 2, 30659, 62413512, 17187432136, 17187432136, 62413512, 30659, 2, 2, 32227, 85222424, 49222798744, 901876719128, 49222798744, 85222424, 32227, 2
OFFSET
1,1
FORMULA
T(n, k) = T(n-1, k) + T(n-1, k-1) + (2*j +7)*prime(j)*T(n-2, k-1) with j=10.
From G. C. Greubel, Mar 06 2021: (Start)
T(n,k,p,q,j) = T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*prime(j)*T(n-2,k-1,p,q,j) with T(2,k,p,q,j) = prime(j), T(3,2,p,q,j) = 2*prime(j)^2 -4, T(4,2,p,q,j) = T(4,3,p,q,j) = prime(j)^2 -2, T(n,1,p,q,j) = T(n,n,p,q,j) = 2 and (p,q,j) = (2,7,10).
Sum_{k=0..n} T(n,k,p,q,j) = 2*prime(j)^(n-1), for (p,q,j)=(2,7,10), = 2*A009973(n-1). (End)
EXAMPLE
Triangle begins as:
2;
29, 29;
2, 1678, 2;
2, 24387, 24387, 2;
2, 25955, 1362648, 25955, 2;
2, 27523, 20483624, 20483624, 27523, 2;
2, 29091, 40833912, 1107920632, 40833912, 29091, 2;
2, 30659, 62413512, 17187432136, 17187432136, 62413512, 30659, 2;
2, 32227, 85222424, 49222798744, 901876719128, 49222798744, 85222424, 32227, 2;
MATHEMATICA
T[n_, k_, p_, q_, j_]:= T[n, k, p, q, j]= If[n==2, Prime[j], If[n==3 && k==2 || n==4 && 2<=k<=3, ((3-(-1)^n)/2)*Prime[j]^(n-1) -2^((3-(-1)^n)/2), If[k==1 || k==n, 2, T[n-1, k, p, q, j] + T[n-1, k-1, p, q, j] + (p*j+q)*Prime[j]*T[n-2, k-1, p, q, j] ]]];
Table[T[n, k, 2, 7, 10], {n, 12}, {k, n}]//Flatten (* modified by G. C. Greubel, Mar 06 2021 *)
PROG
(Sage)
@CachedFunction
def f(n, j): return ((3-(-1)^n)/2)*nth_prime(j)^(n-1) - 2^((3-(-1)^n)/2)
def T(n, k, p, q, j):
if (n==2): return nth_prime(j)
elif (n==3 and k==2 or n==4 and 2<=k<=3): return f(n, j)
elif (k==1 or k==n): return 2
else: return T(n-1, k, 2, 7, 10) + T(n-1, k-1, p, q, j) + (p*j+q)*nth_prime(j)*T(n-2, k-1, p, q, j)
flatten([[T(n, k, p, q, j) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 06 2021
(Magma)
f:= func< n, j | Round(((3-(-1)^n)/2)*NthPrime(j)^(n-1) - 2^((3-(-1)^n)/2)) >;
function T(n, k, p, q, j)
if n eq 2 then return NthPrime(j);
elif (n eq 3 and k eq 2 or n eq 4 and k eq 2 or n eq 4 and k eq 3) then return f(n, j);
elif (k eq 1 or k eq n) then return 2;
else return T(n-1, k, p, q, j) + T(n-1, k-1, p, q, j) + (p*j+q)*NthPrime(j)*T(n-2, k-1, p, q, j);
end if; return T;
end function;
[T(n, k, 2, 7, 10): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 06 2021
CROSSREFS
Sequences with variable (p,q,j): A153516 (0,1,2), A153518 (0,1,3), A153520 (0,1,4), A153521 (0,1,5), A153648 (1,0,3), A153649 (1,1,4), A153650 (1,4,5), A153651 (1,5,6), A153652 (2,1,7), A153653 (2,1,8), A153654 (2,1,9), A153655 (2,1,10), A153656 (2,3,9), this sequence (2,7,10).
Cf. A009973 (powers of 29).
KEYWORD
nonn,tabl,easy,less
AUTHOR
Roger L. Bagula, Dec 30 2008
EXTENSIONS
Edited by G. C. Greubel, Mar 06 2021
STATUS
approved

Search completed in 0.013 seconds