OFFSET
0,3
COMMENTS
This is the Riordan transform of A000217 (triangular numbers) with the Riordan matrix (of the Bell type) A053121 (inverse of the Chebyshev S Bell matrix). See the resulting formulae below. - Wolfdieter Lang, Feb 18 2017.
Conjecture: a(n) is also half the sum of the "cuts-resistance" (see A319416, A319420, A319421) of all binary vectors of length n (see Lenormand, page 4). - N. J. A. Sloane, Sep 20 2018
LINKS
Nathaniel Johnston, Table of n, a(n) for n = 0..1000
F. Disanto and S. Rinaldi, Symmetric convex permutominoes and involutions, PU. M. A., Vol. 22 (2011), No. 1, pp. 39-60. - From N. J. A. Sloane, May 04 2012
Steven R. Finch, How far might we walk at random?, arXiv:1802.04615 [math.HO], 2018.
Claude Lenormand, Deux transformations sur les mots, Preprint, 5 pages, Nov 17 2003. Apparently unpublished. This is a scanned copy of the version that the author sent to me in 2003. - N. J. A. Sloane, Sep 20 2018
FORMULA
If n even, a(n) = (n+1/2)*binomial(n,n/2) - 2^(n-1); if n odd, a(n) = ((n+1)/2)*binomial(n+1,(n+1)/2) - 2^(n-1). - N. J. A. Sloane, Nov 01 2018
a(n) = Sum_{k=0..floor((n-1)/2)} (2*n-4*k-1)*binomial(n,k).
G.f.: (2*x+sqrt(1-4*x^2)-1) / (2*(2*x-1)^2). - Alois P. Heinz, Feb 09 2012
a(n) ~ 2^n * (sqrt(2n/Pi)- 1/2). - Vaclav Kotesovec, Mar 16 2014 (formula simplified by Lewis Chen, May 25 2017)
D-finite with recurrence n*a(n) + (n-5)*a(n-1) + 2*(-5*n+6)*a(n-2) + 4*(-n+8)*a(n-3) + 24*(n-3)*a(n-4) = 0. - R. J. Mathar, Jan 04 2017
From Wolfdieter Lang, Feb 18 2017:(Start)
G.f.: c(x^2)*Tri(x*c(x^2)), with c and Tri the g.f. of A000108 and A000217, respectively. See the explicit form of the g.f. given above by Alois P. Heinz.
(End)
2*a(n) = A152548(n)-2^n. - R. J. Mathar, Jun 17 2021
EXAMPLE
For n = 4 consider the triangle:
....19
...8 11
..5 3 8
.4 1 2 6
3 1 0 2 4
This triangle has 19 at its apex and no other such triangle with the numbers 0 - 4 on its base has a smaller apex value, so a(4) = 19.
MAPLE
a:=proc(n)return add((2*n-4*k-1)*binomial(n, k), k=0..floor((n-1)/2)): end:
seq(a(n), n=0..50);
MATHEMATICA
CoefficientList[Series[(2*x+Sqrt[1-4*x^2]-1) / (2*(2*x-1)^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 16 2014 *)
PROG
(PARI) A189391(n)=sum(i=0, (n-1)\2, (2*n-4*i-1)*binomial(n, i)) \\ M. F. Hasler, Jan 24 2012
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); [0] cat Coefficients(R!((2*x+Sqrt(1-4*x^2)-1)/(2*(2*x-1)^2))); // G. C. Greubel, Aug 24 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Nathaniel Johnston, Apr 20 2011
STATUS
approved