[go: up one dir, main page]

login
Search: a152509 -id:a152509
     Sort: relevance | references | number | modified | created      Format: long | short | data
Array read by antidiagonals: T(n,k) is the number of permutations of k indistinguishable copies of 1..n with exactly 2 local maxima.
+10
10
3, 12, 57, 30, 360, 705, 60, 1400, 7968, 7617, 105, 4170, 51750, 163584, 78357, 168, 10437, 241080, 1830000, 3293184, 791589, 252, 23072, 894201, 13562040, 64168750, 65968128, 7944321, 360, 46440, 2804480, 75278553, 759940800, 2246625000, 1319854080, 79541625
OFFSET
2,1
LINKS
FORMULA
T(n,k) = Sum_{j=0..n-2} P(k-1,3) * P(k-2,2) * P(k,2)^(n-2-j) * P(k,4)^j + 2 * (n-j-2) * P(k-1,3)^2 * P(k,2)^(n-3-j) * P(k,4)^j where P(n,k) = binomial(n+k-1,k-1).
T(n,k) = 3*((k^2 + 4*k + 1)*binomial(k+3,3)^(n-1) - (2*k^2 + 9*k + 1)*(k+1)^(n-1) - k*(k + 5)*(n-2)*(k+1)^(n-1))/(k + 5)^2.
EXAMPLE
Array begins:
======================================================
n\k | 2 3 4 5
----|-------------------------------------------------
2 | 3 12 30 60 ...
3 | 57 360 1400 4170 ...
4 | 705 7968 51750 241080 ...
5 | 7617 163584 1830000 13562040 ...
6 | 78357 3293184 64168750 759940800 ...
7 | 791589 65968128 2246625000 42560067360 ...
8 | 7944321 1319854080 78636093750 2383387566720 ...
...
The T(2,2) = 3 permutations of 1122 with 2 local maxima are 1212, 2112, 2121.
PROG
(PARI) T(n, k) = {3*((k^2 + 4*k + 1)*binomial(k+3, 3)^(n-1) - (2*k^2 + 9*k + 1)*(k+1)^(n-1) - k*(k + 5)*(n-2)*(k+1)^(n-1))/(k + 5)^2}
CROSSREFS
Columns k=2..8 are 3*A152494, 12*A152499, 10*A152504, 30*A152509, 21*A152513, 56*A152517, 36*A152518.
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, May 10 2020
STATUS
approved
1/60 of the number of permutations of 5 indistinguishable copies of 1..n with exactly 3 local maxima.
+10
1
0, 2, 1066, 328314, 87554515, 22414176982, 5672480870616, 1431066048773744, 360732335571459920, 90911141639422741152, 22910020941551289849856, 5773350885207751422091264, 1454885995214232796339050240, 366631366567387199476086758912, 92391110171365499708617443239936
OFFSET
1,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (382,-38020,1394280,-17690400,92123136,-170698752).
FORMULA
From Colin Barker, Jul 19 2020: (Start)
G.f.: x^2*(2 + 302*x - 2858*x^2 - 120673*x^3 - 71148*x^4) / ((1 - 6*x)^3*(1 - 56*x)^2*(1 - 252*x)).
a(n) = 382*a(n-1) - 38020*a(n-2) + 1394280*a(n-3) - 17690400*a(n-4) + 92123136*a(n-5) - 170698752*a(n-6) for n>6.
(End)
MATHEMATICA
LinearRecurrence[{382, -38020, 1394280, -17690400, 92123136, -170698752}, {0, 2, 1066, 328314, 87554515, 22414176982}, 20] (* Harvey P. Dale, Mar 14 2022 *)
PROG
(PARI) \\ PeaksBySig defined in A334774.
a(n) = {PeaksBySig(vector(n, i, 5), [2])[1]/60} \\ Andrew Howroyd, May 12 2020
(PARI) concat(0, Vec(x^2*(2 + 302*x - 2858*x^2 - 120673*x^3 - 71148*x^4) / ((1 - 6*x)^3*(1 - 56*x)^2*(1 - 252*x)) + O(x^20))) \\ Colin Barker, Jul 19 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
R. H. Hardin, Dec 06 2008
EXTENSIONS
Terms a(7) and beyond from Andrew Howroyd, May 12 2020
STATUS
approved
1/60 of the number of permutations of 5 indistinguishable copies of 1..n with exactly 4 local maxima.
+10
1
0, 1, 4194, 5825786, 5682784528, 4873147413516, 3978083870212150, 3186605615943562016, 2534375865966184697328, 2010275266425805924583168, 1593002777198909770195152928, 1261900375041824878511515546368, 999492236937050258502770760302080, 791616311022376735886612880860890112
OFFSET
1,3
LINKS
PROG
(PARI) \\ PeaksBySig defined in A334774.
a(n) = {PeaksBySig(vector(n, i, 5), [3])[1]/60} \\ Andrew Howroyd, May 12 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 06 2008
EXTENSIONS
Terms a(7) and beyond from Andrew Howroyd, May 12 2020
STATUS
approved
1/6 of the number of permutations of 5 indistinguishable copies of 1..n with exactly 5 local maxima.
+10
1
0, 1, 51408, 331072352, 1080698915350, 2691500727775616, 5953257961411738328, 12474940206857421730672, 25498614004537897031551640, 51527434528518884637847012176, 103587934174554666918594336695328, 207763415020909344351469183584249792
OFFSET
1,3
LINKS
PROG
(PARI) \\ PeaksBySig defined in A334774.
a(n) = {PeaksBySig(vector(n, i, 5), [4])[1]/6} \\ Andrew Howroyd, May 12 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 06 2008
EXTENSIONS
Terms a(7) and beyond from Andrew Howroyd, May 12 2020
STATUS
approved

Search completed in 0.181 seconds