[go: up one dir, main page]

login
Search: a146523 -id:a146523
     Sort: relevance | references | number | modified | created      Format: long | short | data
Expansion of (1+x)/(1-4*x).
+10
98
1, 5, 20, 80, 320, 1280, 5120, 20480, 81920, 327680, 1310720, 5242880, 20971520, 83886080, 335544320, 1342177280, 5368709120, 21474836480, 85899345920, 343597383680, 1374389534720, 5497558138880, 21990232555520, 87960930222080, 351843720888320
OFFSET
0,2
COMMENTS
Coordination sequence for infinite tree with valency 5.
For n>=1, a(n+1) is equal to the number of functions f:{1,2,...,n+1}->{1,2,3,4,5} such that for fixed, different x_1, x_2,...,x_n in {1,2,...,n+1} and fixed y_1, y_2,...,y_n in {1,2,3,4,5} we have f(x_i)<>y_i, (i=1,2,...,n). - Milan Janjic, May 10 2007
Number of length-n strings of 5 letters with no two adjacent letters identical. The general case (strings of r letters) is the sequence with g.f. (1+x)/(1-(r-1)*x). - Joerg Arndt, Oct 11 2012
Create a rectangular prism with edges of lengths 2^(n-2), 2^(n-1), and 2^(n) starting at n=2; then the surface area = a(n). - J. M. Bergot, Aug 08 2013
FORMULA
Binomial transform of A060925. Its binomial transform is A003463 (without leading zero). - Paul Barry, May 19 2003
From Paul Barry, May 19 2003: (Start)
a(n) = (5*4^n - 0^n)/4.
G.f.: (1+x)/(1-4*x).
E.g.f.: (5*exp(4*x) - exp(0))/4. (End)
a(n) = Sum_{k=0..n} A029653(n, k)*x^k for x = 3. - Philippe Deléham, Jul 10 2005
a(n) = A146523(n)*A011782(n). - R. J. Mathar, Jul 08 2009
a(n) = 5*A000302(n-1), n>0.
a(n) = 4*a(n-1), n>1. - Vincenzo Librandi, Dec 31 2010
G.f.: 2+x- 2/G(0), where G(k)= 1 + 1/(1 - x*(5*k-4)/(x*(5*k+1) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 04 2013
MAPLE
k := 5; if n = 0 then 1 else k*(k-1)^(n-1); fi;
MATHEMATICA
q = 5; Join[{a = 1}, Table[If[n != 0, a = q*a - a, a = q*a], {n, 0, 25}]] (* and *) Join[{1}, 5*4^Range[0, 25]] (* Vladimir Joseph Stephan Orlovsky, Jul 11 2011 *)
LinearRecurrence[{4}, {1, 5}, 30] (* Harvey P. Dale, Apr 19 2015 *)
PROG
(PARI) a(n)=5*4^n\4 \\ Charles R Greathouse IV, Sep 08 2011
(Magma) [1] cat [5*4^(n-1): n in [1..30]]; // G. C. Greubel, Aug 10 2019
(Sage) [1]+[5*4^(n-1) for n in (1..30)] # G. C. Greubel, Aug 10 2019
(GAP) Concatenation([1], List([1..30], n-> 5*4^(n-1) )); # G. C. Greubel, Aug 10 2019
CROSSREFS
Cf. A003948, A003949. Column 5 in A265583.
KEYWORD
nonn,easy
EXTENSIONS
Edited by N. J. A. Sloane, Dec 04 2009
STATUS
approved
Congruent to 0 or 1 mod 5.
+10
38
0, 1, 5, 6, 10, 11, 15, 16, 20, 21, 25, 26, 30, 31, 35, 36, 40, 41, 45, 46, 50, 51, 55, 56, 60, 61, 65, 66, 70, 71, 75, 76, 80, 81, 85, 86, 90, 91, 95, 96, 100, 101, 105, 106, 110, 111, 115, 116, 120, 121, 125, 126, 130, 131, 135, 136, 140, 141, 145, 146, 150, 151
OFFSET
1,3
COMMENTS
Numbers k that have the same last digit as k^2.
REFERENCES
L. E. Dickson, History of the Theory of Numbers, I, p. 459.
FORMULA
a(n) = 5*n - a(n-1) - 9, n >= 2. - Vincenzo Librandi, Nov 18 2010 [Corrected for offset by David Lovler, Oct 10 2022]
G.f.: x^2*(1+4*x) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Oct 07 2011
a(n+1) = Sum_{k>=0} A030308(n,k)*A146523(k). - Philippe Deléham, Oct 17 2011
a(n) = floor((5/3)*floor(3*(n-1)/2)). - Clark Kimberling, Jul 04 2012
a(n) = (10*n - 13 - 3*(-1)^n)/4. - Robert Israel, Nov 17 2014 [Corrected by David Lovler, Sep 21 2022]
E.g.f.: 4 + ((10*x - 13)*exp(x) - 3*exp(-x))/4. - David Lovler, Sep 11 2022
Sum_{n>=2} (-1)^n/a(n) = sqrt(1+2/sqrt(5))*Pi/10 + log(phi)/(2*sqrt(5)) + log(5)/4, where phi is the golden ratio (A001622). - Amiram Eldar, Oct 12 2022
MAPLE
a[0]:=0:a[1]:=1:for n from 2 to 100 do a[n]:=a[n-2]+5 od: seq(a[n], n=0..61); # Zerinvary Lajos, Mar 16 2008
MATHEMATICA
Select[Range[0, 151], MemberQ[{0, 1}, Mod[#, 5]] &] (* T. D. Noe, Mar 31 2013 *)
PROG
(Haskell)
a008851 n = a008851_list !! (n-1)
a008851_list = [10*n + m | n <- [0..], m <- [0, 1, 5, 6]]
-- Reinhard Zumkeller, Jul 27 2011
(PARI) a(n) = 5*(n\2)+bitand(n, 1); /* Joerg Arndt, Mar 31 2013 */
(PARI) a(n) = floor((5/3)*floor(3*(n-1)/2)); /* Joerg Arndt, Mar 31 2013 */
(Magma) [n: n in [0..200] | n mod 5 in {0, 1}]; // Vincenzo Librandi, Nov 17 2014
KEYWORD
nonn,easy
EXTENSIONS
Offset corrected by Reinhard Zumkeller, Jul 27 2011
STATUS
approved
a(n) = (5*3^n-3)/2.
+10
15
1, 6, 21, 66, 201, 606, 1821, 5466, 16401, 49206, 147621, 442866, 1328601, 3985806, 11957421, 35872266, 107616801, 322850406, 968551221, 2905653666, 8716961001, 26150883006, 78452649021, 235357947066, 706073841201, 2118221523606
OFFSET
0,2
COMMENTS
Numbers n where the recurrence s(0)=1, if s(n-1) >= n then s(n) = s(n-1) - n else s(n) = s(n-1) + n produces s(n)=0. - Hugo Pfoertner, Jan 05 2012
A046901(a(n)) = 1. - Reinhard Zumkeller, Jan 31 2013
Binomial transform of A146523: (1, 5, 10, 20, 40, ...) and double binomial transform of A010685: (1, 4, 1, 4, 1, 4, ...). - Gary W. Adamson, Aug 25 2016
Also the number of maximal cliques in the (n+1)-Hanoi graph. - Eric W. Weisstein, Dec 01 2017
a(n) is the least k such that f(a(n-1)+1) + ... + f(k) > f(a(n-2)+1) + ... + f(a(n-1)) for n > 1, where f(n) = 1/(n+1). Because Sum_{k=1..5*3^(n-1)} 1/(a(n)+3*k-1) + 1/(a(n)+3*k) + 1/(a(n)+3*k+1) - 1/((a(n)+1+5*3^n)*5*3^(n-1)) < Sum_{k=1..5*3^(n-1)} 1/(a(n-1)+k+1) < Sum_{k=1..5*3^(n-1)} 1/(a(n)+3*k-1) + 1/(a(n)+3*k) + 1/(a(n)+3*k+1), we have 1 < 1/3 + 1/4 + ... + 1/7 < 1/8 + 1/9 + ... + 1/22 < ... . - Jinyuan Wang, Jun 15 2020
LINKS
Eric Weisstein's World of Mathematics, Hanoi Graph
Eric Weisstein's World of Mathematics, Maximal Clique
FORMULA
a(n) = 3*(a(n-1) + 1), with a(0)=1.
From R. J. Mathar, Jan 31 2008: (Start)
O.g.f.: (5/2)/(1-3*x) - (3/2)/(1-x).
a(n) = (A005030(n) - 3)/2. (End)
a(n) = A060816(n+1) - 1. - Philippe Deléham, Apr 14 2013
E.g.f.: exp(x)*(5*exp(2*x) - 3)/2. - Stefano Spezia, Aug 28 2023
MAPLE
seq((5*3^n-3)/2, n= 0..25); # Gary Detlefs, Jun 22 2010
MATHEMATICA
a=1; lst={a}; Do[a=a*3+3; AppendTo[lst, a], {n, 0, 100}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 25 2008 *)
Table[(5 3^n - 9)/6, {n, 20}] (* Eric W. Weisstein, Dec 01 2017 *)
(5 3^Range[20] - 9)/6 (* Eric W. Weisstein, Dec 01 2017 *)
LinearRecurrence[{4, -3}, {1, 6}, 20] (* Eric W. Weisstein, Dec 01 2017 *)
CoefficientList[Series[(1 + 2 x)/(1 - 4 x + 3 x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017 *)
PROG
(Magma) [(5*3^n-3)/2: n in [0..30]]; // Vincenzo Librandi, Jun 05 2011
(PARI) a(n) = (5*3^n-3)/2; /* Joerg Arndt, Apr 14 2013 */
KEYWORD
nonn,easy
AUTHOR
Rolf Pleisch, Jan 29 2008
EXTENSIONS
More terms from Vladimir Joseph Stephan Orlovsky, Dec 25 2008
STATUS
approved
a(1) = 2, a(2) = 3; thereafter a(n) is the sum of all the previous terms.
+10
12
2, 3, 5, 10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240, 20480, 40960, 81920, 163840, 327680, 655360, 1310720, 2621440, 5242880, 10485760, 20971520, 41943040, 83886080, 167772160, 335544320, 671088640, 1342177280, 2684354560, 5368709120, 10737418240
OFFSET
1,1
COMMENTS
Except for first three terms, a(n) is 10 times 2^(n-4).
These values comprise the tile values used in the "fives" variant of the game 2048, including 1 as the zeroth term. - Michael De Vlieger, Jul 18 2018
LINKS
E. R. Berlekamp, A contribution to mathematical psychometrics, Unpublished Bell Labs Memorandum, Feb 08 1968 [Annotated scanned copy]
David Eppstein, Making Change in 2048, arXiv:1804.07396 [cs.DM], 2018.
FORMULA
a(n) = A020714(n-3) for n>2.
a(n) = A146523(n-2) for n>2. - R. J. Mathar, May 14 2015
G.f.: x*(1 - x)*(2 + x) / (1 - 2*x). - Colin Barker, Nov 17 2018
MATHEMATICA
t = {2, 3}; For[k = 3, k <= 27, k++, AppendTo[t, Total@ t]]; t (* Michael De Vlieger, May 14 2015 *)
Join[{2, 3}, Table[5 2^n, {n, 0, 40}]] (* Vincenzo Librandi, May 15 2015 *)
Join[{2, 3}, NestList[2#&, 5, 40]] (* Harvey P. Dale, Apr 06 2018 *)
PROG
(Magma) [2, 3] cat [5*2^n: n in [0..35]]; // Vincenzo Librandi, May 15 2015
(PARI) a(n) = if(n<3, n+1, 5*2^(n-3)); \\ Altug Alkan, Jul 18 2018
(PARI) Vec(x*(1 - x)*(2 + x) / (1 - 2*x) + O(x^40)) \\ Colin Barker, Nov 17 2018
(PARI) a(n) = ceil(5*2^(n-3)) \\ Alan Michael Gómez Calderón, Mar 30 2022
CROSSREFS
KEYWORD
nonn,easy,less
AUTHOR
Giovanni Teofilatto, Apr 24 2015
STATUS
approved
Binomial transform of A010688.
+10
4
1, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
OFFSET
0,2
COMMENTS
Hankel transform is := 1,-48,0,0,0,0,0,0,0,...
FORMULA
a(0)=1, a(n) = 2^(n+2) for n>0.
a(n) = Sum_{k, 0..n} A109466(n,k)*A146534(k).
a(n) = A132479(n), n>1. - R. J. Mathar, Nov 02 2008
G.f.: (1+6*x) / (1-2*x). - Colin Barker, Mar 17 2016
MATHEMATICA
Join[{1}, 2^Range[3, 40]] (* Harvey P. Dale, Feb 28 2016 *)
PROG
(PARI) Vec((1+6*x)/(1-2*x) + O(x^50)) \\ Colin Barker, Mar 17 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Oct 31 2008
EXTENSIONS
Corrected and extended by Harvey P. Dale, Feb 28 2016
STATUS
approved
Triangle of compressed square roots of Gray code * bit-reversal permutation.
+10
2
1, 3, 1, 6, 1, 5, 6, 9, 1, 10, 12, 18, 1, 17, 10, 12, 18, 33, 1, 34, 20, 24, 36, 66, 1, 65, 34, 20, 24, 36, 66, 129, 1, 130, 68, 40, 48, 72, 132, 258, 1, 257, 130, 68, 40, 48, 72, 132, 258, 513, 1, 514, 260, 136, 80
OFFSET
1,2
COMMENTS
The permutation that turns a natural ordered into a sequency ordered Walsh matrix of size 2^n is the product of the Gray code permutation A003188(0..2^n-1) and the bit-reversal permutation A030109(n,0..2^n-1).
(This permutation of 2^n elements can be represented by the compression vector [2^(n-1), 3*[2^(n-2)..4,2,1]] with n elements.)
This triangle shows the compression vectors of the unique square roots of these permutations, which correspond to symmetric binary matrices with 2n-1 ones.
(These n X n matrices correspond to graphs that can be described by permutations of n elements, which are shown in A239304.)
Rows of the square array:
T(1,n) = 1,3,6,6,12,12,24,24,48,48,96,96,192,192,384,384,... (compare A003945)
T(2,n) = 1,1,9,18,18,36,36,72,72,144,144,288,288,576,576,... (compare A005010)
Columns of the square array:
T(m,1) = 1,1,5,10,10,20,20,40,40,80,80,160,160,320,320,... (compare A146523)
T(m,2) = 3,1,1,17,34,34,68,68,136,136,272,272,544,544,... (compare A110287)
LINKS
EXAMPLE
Triangular array begins:
1
3 1
6 1 5
6 9 1 10
12 18 1 17 10
12 18 33 1 34 20
Square array begins:
1 3 6 6 12 12
1 1 9 18 18 36
5 1 1 33 66 66
10 17 1 1 129 258
10 34 65 1 1 513
20 34 130 257 1 1
The Walsh permutation wp(8,12,6,3) = (0,8,12,4, 6,14,10,2, 3,11,15,7, 5,13,9,1) permutes the natural ordered into the sequency ordered Walsh matrix of size 2^4.
Its square root is wp(6,9,1,10) = (0,6,9,15, 1,7,8,14, 10,12,3,5, 11,13,2,4).
So row 4 of the triangular array is (6,9,1,10).
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Tilman Piesk, Mar 14 2014
STATUS
approved
Least k such that A006667(k)/A006577(k) = 1/n.
+10
2
159, 6, 5, 10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240, 20480, 40960, 81920, 163840, 327680, 655360, 1310720, 2621440, 5242880, 10485760, 20971520, 41943040, 83886080, 167772160, 335544320, 671088640, 1342177280, 2684354560, 5368709120, 10737418240
OFFSET
3,1
COMMENTS
A006667: number of tripling steps to reach 1 in '3x+1' problem.
A006577: number of halving and tripling steps to reach 1 in '3x+1' problem.
a(n) = {159, 6} union {A020714}.
FORMULA
For n >= 5, a(n) = 5*2^n/32. - David A. Corneth, Jun 01 2017
From Colin Barker, Jun 01 2017: (Start)
G.f.: x^3*(159 - 312*x - 7*x^2) / (1 - 2*x).
a(n) = 2*a(n-1) for n>5.
(End)
EXAMPLE
a(3) = 159 because A006667(159)/A006577(159) = 18/54 = 1/3.
MAPLE
nn:=10^12:
for n from 3 to 35 do:
ii:=0:
for k from 2 to 10^6 while(ii=0) do:
m:=k:s1:=0:s2:=0:
for i from 1 to nn while(m<>1) do:
if irem(m, 2)=0
then
s2:=s2+1:m:=m/2:
else
s1:=s1+1:m:=3*m+1:
fi:
od:
if n*s1=s1+s2
then
ii:=1: printf(`%d, `, k):
else
fi:
od:od:
MATHEMATICA
f[u_]:=Module[{a=u, k=0}, While[a!=1, k++; If[EvenQ[a], a=a/2, a=a*3+1]]; k]; Table[f[u], {u, 10^7}]; g[v_]:=Count[Differences[NestWhileList[If[EvenQ[#], #/2, 3#+1]&, v, #>1&]], _?Positive]; Table[g[v], {v, 10^7}]; Do[k=3; While[g[k]/f[k]!=1/n, k++]; Print[n, " ", k], {n, 3, 35}]
PROG
(PARI) a(n) = if(n < 5, [0, 0, 159, 6][n], 5<<(n-5)) \\ David A. Corneth, Jun 01 2017
(PARI) Vec(x^3*(159 - 312*x - 7*x^2) / (1 - 2*x) + O(x^50)) \\ Colin Barker, Jun 01 2017
CROSSREFS
Cf. A006577, A006666, A006667. Essentially the same as A020714, A084215, A146523 and A257113.
KEYWORD
nonn,easy
AUTHOR
Michel Lagneau, Jun 01 2017
STATUS
approved
a(n) = A140944(n+1) - 3*A140944(n).
+10
1
1, -3, -1, 5, -6, 3, -11, 10, -12, -5, 21, -22, 20, -24, 11, -43, 42, -44, 40, -48, -21, 85, -86, 84, -88, 80, -96, 43, -171, 170, -172, 168, -176, 160, -192, -85, 341, -342, 340, -344, 336, -352, 320, -384, 171, -683, 682, -684, 680, -688
OFFSET
0,2
COMMENTS
Jacobsthal numbers appear twice: 1) A001045(n+2) signed, terms 0, 1, 3, 6, 10 (A000217); 2) A001045(n+1) signed, terms 0, 2, 5, 9 (n*(n+3)/2=A000096); between them are -3; 5, -6; -11, 10, -12; which appear (opposite sign) by rows in A140503 (1, -1, 2, 3, -2, 4) square.
Consider the permutation of the nonnegative numbers
0, 2, 5, 9, 14, 20, 27,
1, 3, 6, 10, 15, 21, 28,
4, 7, 11, 16, 22, 29,
8, 12, 17, 23, 30,
13, 18, 24, 31,
19, 25, 32,
26, 33,
34, etc.
The corresponding distribution of a(n) is
1, -1, 3, -5, 11, -21, 43,
-3, 5, -11, 21, -43, 85, -171,
-6, 10, -22, 42, -86, 170,
-12, 20, -44, 84, -172,
-24, 40, -88, 168,
-48, 80, -176,
-96, 160,
-192, etc.
Column sums: -2, -2, -10, -10, -42, -42, -170, ... duplicate of a bisection of -A078008(n+2).
b(n)= 1, -1, 3, -5, 11, 21, ... = (-1)^n*A001045(n+1) = A077925(n). Every row is b(n) or b(n+2) multiplied by 1, -1, -2, -4, -8, -16, ..., essentially -A011782(n).
MATHEMATICA
T[0, 0] = 0; T[1, 0] = T[0, 1] = 1; T[0, n_] := T[0, n] = T[0, n - 1] + 2*T[0, n - 2]; T[d_, d_] = 0; T[d_, n_] := T[d, n] = T[d - 1, n + 1] - T[d - 1, n]; A140944 = Table[T[d, n], {d, 0, 10}, {n, 0, d}] // Flatten; a[n_] := A140944[[n + 2]] - 3*A140944[[n + 1]]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Dec 18 2014 *)
KEYWORD
sign,tabl
AUTHOR
Paul Curtz, Jul 25 2008
EXTENSIONS
More terms and a(19)=-48 instead of 42 corrected by Jean-François Alcover, Dec 22 2014
STATUS
approved

Search completed in 0.034 seconds