OFFSET
1,10
COMMENTS
a) Conjecture: entries > 1 will always be prime. The entry will be larger than the largest prime factor of the highly composite number.
b) Will 1 always be the most common entry?
c) While a prime may always be located close to each highly composite number, is the converse false?
d) Is there always a prime between successive highly composite numbers?
From Antti Karttunen, Feb 26 2019: (Start)
The second sentence of point (a) follows as both gcd(n, A151799(n)) = 1 and gcd(A151800(n), n) = 1 for all n > 2 and the fact that the highly composite numbers are products of primorials, A002110 (with the least coprime prime > the largest prime factor). See also the conjectures and notes in A129912 and A141345. (End)
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..19999
Bill McEachen, Alternate plot, Wikimedia Commons.
Graeme McRae, Highly Composite Numbers.
Wikipedia, Highly Composite Numbers.
Wikipedia, Divisor Function (sigma).
FORMULA
EXAMPLE
a(5) = abs(12-11) = 1.
MATHEMATICA
With[{s = DivisorSigma[0, Range[Product[Prime@ i, {i, 8}]]]}, Map[If[PrimeQ@ #, 0, Min[# - NextPrime[#, -1], NextPrime[#] - #]] &@ FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]]] (* Michael De Vlieger, Mar 11 2019 *)
PROG
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Bill McEachen, May 01 2006
EXTENSIONS
More terms from Don Reble, May 02 2006
STATUS
approved