[go: up one dir, main page]

login
Search: a140454 -id:a140454
     Sort: relevance | references | number | modified | created      Format: long | short | data
Primes p such that p+2 and p^3+2 are also prime.
+10
4
3, 5, 29, 71, 311, 419, 431, 1031, 1091, 1151, 1451, 1931, 2339, 3371, 3461, 4001, 4421, 4799, 5651, 6269, 6551, 6569, 6761, 6779, 6869, 7559, 7589, 8219, 9011, 9281, 10301, 11069, 11489, 11549, 12161, 12239, 12251, 12539, 14081, 15641, 17189, 18059, 18119, 18521
OFFSET
1,1
COMMENTS
All the terms in the sequence, except a(1), are congruent to 2 mod 3.
LINKS
MAPLE
KD := proc() local a, b, d; a:=ithprime(n); b:=a+2; d:=a^3+2; if isprime(b)and isprime(d) then RETURN (a); fi; end: seq(KD(), n=1..10000);
MATHEMATICA
Select[Prime[Range[2200]], AllTrue[{#+2, #^3+2}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 14 2017 *)
PROG
(PARI) s=[]; forprime(p=2, 20000, if(isprime(p+2) && isprime(p^3+2), s=concat(s, p))); s \\ Colin Barker, Apr 01 2014
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Apr 01 2014
STATUS
approved
Primes p such that p - 2 and p^3 - 2 are also prime.
+10
4
19, 31, 109, 151, 241, 619, 859, 1489, 1951, 2131, 2791, 2971, 3559, 4129, 4651, 4789, 4801, 5659, 6661, 6781, 7591, 8221, 8629, 8821, 8971, 9241, 9721, 9931, 10891, 11971, 12109, 12541, 13831, 14011, 15271, 15289, 15331, 16831, 17029, 17419, 17839, 17989, 18121, 18541, 20149, 20899, 21019
OFFSET
1,1
COMMENTS
All the terms in the sequence are congruent to 1 mod 3.
LINKS
EXAMPLE
19 is in the sequence because 19 is a prime: 19 - 2 = 17 and 19^3 - 2 = 6857 are also prime.
151 is in the sequence because 151 is a prime: 151 - 2 = 149 and 151^3 - 2 = 3442949 are also prime.
MAPLE
KD := proc() local a, b, d; a:=ithprime(n); b:=a-2; d:=a^3-2; if isprime(b)and isprime(d) then RETURN (a); fi; end: seq(KD(), n=1..10000);
MATHEMATICA
Select[Prime[Range[2000]], PrimeQ[# - 2] && PrimeQ[#^3 - 2] &]
PROG
(PARI) s=[]; forprime(p=2, 22000, if(isprime(p-2) && isprime(p^3-2), s=concat(s, p))); s \\ Colin Barker, Apr 02 2014
CROSSREFS
Intersection of A006512 and A178251.
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Apr 01 2014
STATUS
approved

Search completed in 0.007 seconds