[go: up one dir, main page]

login
Search: a139464 -id:a139464
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of distinct prime factors of n! + 2n - 1.
+10
4
1, 1, 1, 1, 2, 2, 2, 3, 1, 1, 5, 2, 3, 4, 2, 2, 3, 4, 3, 3, 3, 3, 4, 2, 5, 4, 2, 6, 6, 2, 4, 5, 5, 3, 3, 3, 2, 5, 5, 4, 5, 2, 5, 5, 5, 5, 8, 8, 5, 6, 4, 2, 7, 5, 5, 6, 4, 5, 3, 8, 7, 6, 5, 7, 4, 3, 5, 6, 1, 1, 7, 5, 8, 7, 3, 1, 4, 4, 5, 5, 4, 2, 4, 5, 5, 7, 3, 6, 7, 7, 4, 7, 6, 5, 7, 5, 3, 8, 5, 3, 4, 6, 5, 7, 7
OFFSET
1,5
LINKS
Florian Luca and Igor E. Shparlinski, On the largest prime factor of n! + 2^n - 1, Journal de Théorie des Nombres de Bordeaux 17 (2005), 859-870.
FORMULA
a(n) = A001221(A139464(n)). - Amiram Eldar, Feb 05 2020
MATHEMATICA
a = {}; Do[AppendTo[a, n! + 2 n - 1], {n, 1, 40}]; b = {}; Do[c = Length[FactorInteger[a[[n]]]]; AppendTo[b, c], {n, 1, Length[a]}]; b (* Artur Jasinski *)
PrimeNu @ Table[n! + 2*n - 1, {n, 1, 30}] (* Amiram Eldar, Feb 05 2020 *)
PROG
(PARI) a(n)=omega(n!+2*n-1) \\ Charles R Greathouse IV, Feb 01 2013
KEYWORD
nonn
AUTHOR
Artur Jasinski, Apr 22 2008
EXTENSIONS
a(41)-a(60) from Amiram Eldar, Feb 05 2020
a(61)-a(80) from Jinyuan Wang, Apr 03 2020
a(81)-a(100) from Apurva Rai, Sep 20 2020
a(101)-a(105) from Apurva Rai, Sep 21 2020
STATUS
approved
Smallest prime factor of n! + 2n - 1.
+10
4
2, 5, 11, 31, 3, 17, 31, 3, 362897, 3628819, 3, 251, 5, 3, 93407, 200989, 3, 5, 211, 3, 199, 38189, 3, 314707, 7, 3, 2473, 5, 3, 98274048659069, 1447, 3, 5, 585341, 3, 61, 8150209692797, 3, 7, 131, 3, 193, 5, 3, 73, 7, 3, 5, 53, 3, 647, 151897, 3, 67801, 7001
OFFSET
1,1
LINKS
Apurva Rai, Table of n, a(n) for n = 1..105 (terms n = 1..60 from Amiram Eldar)
Florian Luca and Igor E. Shparlinski, On the largest prime factor of n! + 2^n - 1, Journal de Theorie des Nombres de Bordeaux 17 (2005), 859-870.
FORMULA
a(n) = A020639(A139464(n)). - Amiram Eldar, Feb 05 2020
MATHEMATICA
a = {}; Do[AppendTo[a, n! + 2 n - 1], {n, 1, 40}]; b = {}; Do[c = FactorInteger[a[[n]]]; d = c[[1]]; AppendTo[b, d[[1]]], {n, 1, Length[a]}]; b (* Artur Jasinski *)
FactorInteger[#][[1, 1]] & /@ Table[n! + 2*n - 1, {n, 1, 18}] (* Amiram Eldar, Feb 05 2020 *)
PROG
(PARI) a(n)=factor(n!+2*n-1)[1, 1] \\ Charles R Greathouse IV, Feb 01 2013
KEYWORD
nonn
AUTHOR
Artur Jasinski, Apr 22 2008
EXTENSIONS
a(41)-a(55) from Amiram Eldar, Feb 05 2020
STATUS
approved
Largest prime factor of n! + 2n - 1.
+10
4
2, 5, 11, 31, 43, 43, 163, 2689, 362897, 3628819, 179, 1908373, 800903, 101341, 13999747, 104099179, 10778406912001, 1300448327, 356961701, 62382102773760001, 10367823077693, 11437176299, 102338720137, 1971511284252461621, 4324853339, 25264139643338071514377, 4403101273925738843820461
OFFSET
1,1
LINKS
Robert Israel and Amiram Eldar, Table of n, a(n) for n = 1..60 (terms 1..57 from Robert Israel)
Florian Luca and Igor E. Shparlinski, On the largest prime factor of n! + 2^n - 1, Journal de Theorie des Nombres de Bordeaux 17 (2005), 859-870.
FORMULA
a(n) = A006530(A139464(n)). - Amiram Eldar, Feb 05 2020
MAPLE
seq(max(numtheory:-factorset(n!+2*n-1)), n=1..30); # Robert Israel, Jun 28 2018
MATHEMATICA
a = {}; Do[k = n! + 2 n - 1; c = First[Last[FactorInteger[k]]]; AppendTo[a, c], {n, 1, 40}]; a (*Artur Jasinski*)
Table[FactorInteger[n!+2n-1][[-1, 1]], {n, 30}] (* Harvey P. Dale, Aug 31 2011 *)
PROG
(PARI) a(n)=my(f=factor(n!+2*n-1)[, 1]); f[#f] \\ Charles R Greathouse IV, Feb 01 2013
KEYWORD
nonn
AUTHOR
Artur Jasinski, Apr 22 2008
EXTENSIONS
More terms from Robert Israel, Jun 28 2018
STATUS
approved

Search completed in 0.006 seconds