[go: up one dir, main page]

login
Search: a132973 -id:a132973
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = Fibonacci(n)*A132973(n) for n>=1, with a(0)=1, where A132973 lists the coefficients in psi(-q)^3/psi(-q^3) and where psi() is a Ramanujan theta function.
+20
5
1, -3, 3, -6, 9, 0, 24, -78, 63, -102, 0, 0, 432, -1398, 2262, 0, 2961, 0, 7752, -25086, 0, -65676, 0, 0, 139104, -225075, 728358, -589254, 1906866, 0, 0, -8077614, 6534927, 0, 0, 0, 44791056, -144946902, 234529014, -379475916, 0, 0, 1607485776, -2600966622, 0
OFFSET
0,2
COMMENTS
Compare g.f. to the Lambert series of A132973:
1 - 3*Sum_{n>=0} x^(6*n+1)/(1+x^(6*n+1)) - x^(6*n+5)/(1+x^(6*n+5)).
LINKS
FORMULA
G.f.: 1 - 3*Sum_{n>=0} Fibonacci(6*n+1)*x^(6*n+1)/(1 + Lucas(6*n+1) * x^(6*n+1) - x^(12*n+2)) - Fibonacci(6*n+5)*x^(6*n +5)/(1 + Lucas(6*n+5) * x^(6*n+5) - x^(12*n+10)).
EXAMPLE
G.f.: A(x) = 1 - 3*x + 3*x^2 - 6*x^3 + 9*x^4 + 24*x^6 - 78*x^7 + 63*x^8 +...
where A(x) = 1 - 1*3*x + 1*3*x^2 - 2*3*x^3 + 3*3*x^4 + 8*3*x^6 - 13*6*x^7 + 21*3*x^8 +...+ Fibonacci(n)*A132973(n)*x^n +...
The g.f. is also given by the identity:
A(x) = 1 - 3*( 1*x/(1+x-x^2) - 5*x^5/(1+11*x^5-x^10) + 13*x^7/(1+29*x^7-x^14) - 89*x^11/(1+199*x^11-x^22) + 233*x^13/(1+521*x^13-x^26) - 1597*x^17/(1+3571*x^17-x^34) +...).
MATHEMATICA
A132973:= CoefficientList[Series[(-1)^(-1/4)*EllipticTheta[2, 0, I*Sqrt[q]]^3/EllipticTheta[2, 0, I*Sqrt[q^3]]/4, {q, 0, 60}], q]; Table[If[n == 0, 1, Fibonacci[n]*A132973[[n + 1]]], {n, 0, 50}] (* G. C. Greubel, Dec 03 2017 *)
PROG
(PARI) {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
{a(n)=polcoeff(1 - 3*sum(m=0, n, fibonacci(6*m+1)*x^(6*m+1)/(1+Lucas(6*m+1)*x^(6*m+1)-x^(12*m+2) +x*O(x^n)) - fibonacci(6*m+5)*x^(6*m+5)/(1+Lucas(6*m+5)*x^(6*m+5)-x^(12*m+10) +x*O(x^n)) ), n)}
for(n=0, 61, print1(a(n), ", "))
CROSSREFS
Cf. A209450 (Pell variant).
KEYWORD
sign
AUTHOR
Paul D. Hanna, Feb 04 2012
STATUS
approved
a(n) = Pell(n)*A132973(n) for n>=1, with a(0)=1, where A132973 lists the coefficients in psi(-q)^3/psi(-q^3) and where psi() is a Ramanujan theta function.
+20
4
1, -3, 6, -15, 36, 0, 210, -1014, 1224, -2955, 0, 0, 41580, -200766, 484692, 0, 1412496, 0, 8232630, -39750654, 0, -231683790, 0, 0, 1630019160, -3935214363, 19000895772, -22936110135, 110745336312, 0, 0, -1558305137094, 1881040698144, 0, 0, 0, 63900011068740
OFFSET
0,2
COMMENTS
Compare g.f. to the Lambert series of A132973: 1 - 3*Sum_{n>=0} x^(6*n+1)/(1+x^(6*n+1)) - x^(6*n+5)/(1+x^(6*n+5)).
LINKS
FORMULA
G.f.: 1 - 3*Sum_{n>=0} Pell(6*n+1)*x^(6*n+1)/(1+A002203(6*n+1)*x^(6*n+1)-x^(12*n+2)) - Pell(6*n+5)*x^(6*n+5)/(1+A002203(6*n+5)*x^(6*n+5)-x^(12*n+10)), where A002203(n) = Pell(n-1) + Pell(n+1).
EXAMPLE
G.f.: A(x) = 1 - 3*x + 6*x^2 - 15*x^3 + 36*x^4 + 210*x^6 - 1014*x^7 +...
where A(x) = 1 - 1*3*x + 2*3*x^2 - 5*3*x^3 + 12*3*x^4 + 70*3*x^6 - 169*6*x^7 + 408*3*x^8 +...+ Pell(n)*A132973(n)*x^n +...
The g.f. is also given by the identity:
A(x) = 1 - 3*( 1*x/(1+2*x-x^2) - 29*x^5/(1+82*x^5-x^10) + 169*x^7/(1+478*x^7-x^14) - 5741*x^11/(1+16238*x^11-x^22) + 33461*x^13/(1+94642*x^13-x^26) - 1136689*x^17/(1+3215042*x^17-x^34) +...).
MATHEMATICA
A132973[n_]:= SeriesCoefficient[EllipticTheta[2, Pi/4, q^(1/2)]^3/EllipticTheta[2, Pi/4, q^(3/2)]/2, {q, 0, n}]; Join[{1}, Table[ Fibonacci[n, 2]*A132973[n], {n, 1, 50}]] (* G. C. Greubel, Jan 02 2018 *)
PROG
(PARI) {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)), n)}
{A002203(n)=Pell(n-1)+Pell(n+1)}
{a(n)=polcoeff(1 - 3*sum(m=0, n, Pell(6*m+1)*x^(6*m+1)/(1+A002203(6*m+1)*x^(6*m+1)-x^(12*m+2) +x*O(x^n)) - Pell(6*m+5)*x^(6*m+5)/(1+A002203(6*m+5)*x^(6*m+5)-x^(12*m+10) +x*O(x^n)) ), n)}
for(n=0, 61, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Mar 10 2012
STATUS
approved
Expansion of eta(q^3) * eta(q^2)^6 / (eta(q)^3 * eta(q^6)^2) in powers of q.
+10
8
1, 3, 3, 3, 3, 0, 3, 6, 3, 3, 0, 0, 3, 6, 6, 0, 3, 0, 3, 6, 0, 6, 0, 0, 3, 3, 6, 3, 6, 0, 0, 6, 3, 0, 0, 0, 3, 6, 6, 6, 0, 0, 6, 6, 0, 0, 0, 0, 3, 9, 3, 0, 6, 0, 3, 0, 6, 6, 0, 0, 0, 6, 6, 6, 3, 0, 0, 6, 0, 0, 0, 0, 3, 6, 6, 3, 6, 0, 6, 6, 0, 3, 0, 0, 6, 0, 6, 0, 0, 0, 0, 12, 0, 6, 0, 0, 3, 6, 9, 0, 3, 0, 0, 6, 6
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
REFERENCES
Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 80, Eq. (32.42).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^3 + u^2*w + 4 * v*w^2 - 4 * v^2*w - 2 * u*v*w.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = (u1 - u2) * (u1 - u2 - u3 + u6) - 3 * u6 * (u2 - u6).
Expansion of psi(q)^3 / psi(q^3) in powers of q where psi() is a Ramanujan theta function.
Expansion of (a(q) + a(q^2)) / 2 = b(q^2)^2 / b(q) in powers of q where a(), b() are cubic AGM theta functions. - Michael Somos, Aug 30 2008
Euler transform of period 6 sequence [ 3, -3, 2, -3, 3, -2, ...].
Moebius transform is period 6 sequence [ 3, 0, 0, 0, -3, 0, ...]. - Michael Somos, Aug 11 2009
a(n) = 3 * b(n) unless n=0 and b() is multiplicative with b(p^e) = 1 if p=2 or p=3; b(p^e) = 1+e if p == 1 (mod 6); b(p^e) = (1 + (-1)^e) / 2 if p == 5 (mod 6). - Michael Somos, Aug 11 2009
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = (27/4)^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A123330. - Michael Somos, Aug 11 2009
G.f.: (Product_{k>0} (1 - x^(2*k)) / (1 - x^(2*k - 1)))^3 / (Product_{k>0} (1 - x^(6*k)) / (1 - x^(6*k - 3))). - Michael Somos, Aug 11 2009
a(n) = 3 * A035178(n) unless n=0. a(n) = (-1)^n * A132973. a(2*n) = a(3*n) = a(n). a(6*n + 5) = 0. a(2*n + 1) = 3 * A033762. a(3*n + 1) = 3 * A033687(n). a(4*n + 1) = 3 * A112604(n). a(4*n + 3) = 3 * A112605(n). a(6*n + 1) = 3 * A097195(n). Convolution inverse of A132979.
a(8*n + 1) = 3 * A112606(n). a(8*n + 3) = 3* A112608(n). a(8*n + 5) = 6 * A112607(n-1). a(8*n + 7) = 6 * A112609(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi*sqrt(3)/2 = 2.720699... . - Amiram Eldar, Dec 28 2023
EXAMPLE
G.f. = 1 + 3*q + 3*q^2 + 3*q^3 + 3*q^4 + 3*q^6 + 6*q^7 + 3*q^8 + 3*q^9 + ...
MATHEMATICA
a[ n_] := If[ n < 1, Boole[n == 0], 3 Times @@ (Which[ # < 5, 1, Mod[#, 6] == 5, 1 - Mod[#2, 2], True, #2 + 1 ] & @@@ FactorInteger@n)]; (* Michael Somos, Aug 04 2015 *)
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q^(1/2)]^3 / (4 EllipticTheta[ 2, 0, q^(3/2)]), {q, 0, n}]; (* Michael Somos, Aug 04 2015 *)
QP = QPochhammer; s = QP[q^3]*(QP[q^2]^6/(QP[q]^3*QP[q^6]^2)) + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Nov 24 2015 *)
PROG
(PARI) {a(n) = if( n<1, n==0, 3 * direuler( p=2, n, 1 / ((1 - X) * (1 - kronecker( -12, p) * X)))[n])};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A) * eta(x^2 + A)^6 / (eta(x^6 + A)^2 * eta(x + A)^3), n))};
(PARI) {a(n) = if ( n<1, n==0, 3 * sumdiv( n, d, kronecker( -12, d)))};
(Sage) A = ModularForms( Gamma1(6), 1, prec=90).basis(); A[0] + 3*A[1] # Michael Somos, Sep 27 2013
(Magma) A := Basis( ModularForms( Gamma1(6), 1), 88); A[1] + 3*A[2]; /* Michael Somos, Aug 04 2015 */
KEYWORD
nonn,easy
AUTHOR
Michael Somos, May 24 2005
STATUS
approved
Expansion of psi(-q^3) / psi(-q)^3 in powers of q where psi() is a Ramanujan theta function.
+10
8
1, 3, 6, 12, 24, 45, 78, 132, 222, 363, 576, 900, 1392, 2121, 3180, 4716, 6936, 10098, 14550, 20796, 29520, 41595, 58176, 80856, 111750, 153561, 209820, 285240, 385968, 519840, 696960, 930516, 1237470, 1639314, 2163456, 2845080, 3728904, 4871211
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of eta(q^2)^3 * eta(q^3) * eta(q^12) / (eta(q)^3 * eta(q^4)^3 * eta(q^6) ) in powers of q.
Euler transform of period 12 sequence [3, 0, 2, 3, 3, 0, 3, 3, 2, 0, 3, 2, ...].
G.f.: Product_{k>0} (1 - x^(3*k)) * (1 + x^(6*k)) / ( (1 - x^k) * (1 + x^(2*k)) )^3.
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = (108)^(-1/2) (t/i)^(-1) g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A133637.
A132979(n) = (-1)^n * a(n). Convolution inverse of A132973.
a(n) ~ exp(2*Pi*sqrt(n/3)) / (2 * 3^(5/4) * n^(5/4)). - Vaclav Kotesovec, Oct 13 2015
EXAMPLE
G.f. = 1 + 3*q + 6*q^2 + 12*q^3 + 24*q^4 + 45*q^5 + 78*q^6 + 132*q^7 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 2 EllipticTheta[ 2, Pi/4, q^(3/2)] / EllipticTheta[ 2, Pi/4, q^(1/2)]^3 , {q, 0, n}]; (* Michael Somos, Sep 26 2017 *)
nmax=60; CoefficientList[Series[Product[(1-x^(3*k)) * (1+x^(6*k)) / ( (1-x^k)^3 * (1+x^(2*k))^3 ), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 13 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^3 + A) * eta(x^12 + A ) / (eta(x + A)^3 * eta(x^4 + A)^3 * eta(x^6 + A)), n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Sep 07 2007
STATUS
approved
Expansion of i * theta_2(i * q^3)^3 / (4 * theta_2(i * q)) in powers of q^2.
+10
7
1, 1, 1, -1, 0, 1, 2, 1, 1, 0, 0, -1, 2, 2, 0, -1, 0, 1, 2, 0, 2, 0, 0, 1, 1, 2, 1, -2, 0, 0, 2, 1, 0, 0, 0, -1, 2, 2, 2, 0, 0, 2, 2, 0, 0, 0, 0, -1, 3, 1, 0, -2, 0, 1, 0, 2, 2, 0, 0, 0, 2, 2, 2, -1, 0, 0, 2, 0, 0, 0, 0, 1, 2, 2, 1, -2, 0, 2, 2, 0, 1, 0, 0, -2, 0, 2, 0, 0, 0, 0, 4, 0, 2, 0, 0, 1, 2, 3, 0, -1, 0, 0, 2, 2, 0
OFFSET
1,7
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
LINKS
Li-Chien Shen, On the Modular Equations of Degree 3, Proc. Amer. Math. Soc. 122 (1994), no. 4, 1101-1114. See p. 1105, equation (3.8).
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of (eta(q^2) * eta(q^3)^3 * eta(q^12)^3) / (eta(q) * eta(q^4) * eta(q^6)^3) in powers of q.
Euler transform of period 12 sequence [1, 0, -2, 1, 1, 0, 1, 1, -2, 0, 1, -2, ...].
Moebius transform is period 12 sequence [1, 0, 0, -2, -1, 0, 1, 2, 0, 0, -1, 0, ...].
a(n) is multiplicative and a(2^e) = -(-1)^e if e>0, a(3^e) = 1, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1+(-1)^e)/2 if p == 5 (mod 6).
G.f.: Sum_{k>0} x^(6*k - 5) / (1 - x^(6*k - 5)) - x^(6*k - 1) / (1 - x^(6*k - 1)) - 2 * x^(12*k - 8) / (1 - x^(12*k - 8)) + 2 * x^(12*k - 4) / (1 - x^(12*k-4)).
G.f.: Sum_{k>0} x^k * (1 - x^(3*k))^2 / (1 + x^(4*k) + x^(8*k)).
G.f.: x * Product_{k>0} (1 - x^k) / (1 - x^(4*k - 2)) * ((1 - x^(12*k - 6)) / (1 - x^(3*k)))^3.
Expansion of theta_2(i * q^3)^3 / (4 * theta_2(i * q)) in powers of q^2.
Expansion of q * psi(-q^3)^3 / psi(-q) in powers of q where psi() is a Ramanujan theta function.
Expansion of (c(q) * c(q^4)) / (3 * c(q^2)) in powers of q where c() is a cubic AGM theta function.
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = (4/3)^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A132973.
a(n) = -(-1)^n * A093829(n). - Michael Somos, Jan 31 2015
Convolution inverse of A133637.
a(3*n) = a(n). a(6*n + 5) = a(12*n + 10) = 0. |a(n)| = A035178(n).
a(2*n) = A093829(n). a(2*n + 1) = A033762(n).
a(4*n + 1) = A112604(n). a(4*n + 3) = A112605(n).
a(6*n + 1) = A097195(n). a(6*n + 2) = A033687(n).
a(8*n + 1) = A112606(n). a(8*n + 3) = A112608(n). a(8*n + 5) = 2 * A112607(n). a(8*n + 6) = A112605(n). a(8*n + 7) = 2 * A112609(n).
a(12*n + 1) = A123884(n). a(12*n + 7) = 2 * A121361(n).
a(24*n + 1) = A131961(n). a(24*n + 7) = 2 * A131962(n). a(24*n + 13) = 2 * A121963(n). a(24*n + 19) = 2 * A131964(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(6*sqrt(3)) = 0.604599... (A073010). - Amiram Eldar, Nov 23 2023
EXAMPLE
G.f. = q + q^2 + q^3 - q^4 + q^6 + 2*q^7 + q^8 + q^9 - q^12 + 2*q^13 + ...
MATHEMATICA
a[ n_] := If[ n < 1, 0, DivisorSum[ n, {1, 0, 0, -2, -1, 0, 1, 2, 0, 0, -1, 0}[[Mod[#, 12, 1]]] &]]; (* Michael Somos, Jan 31 2015 *)
PROG
(PARI) {a(n) = if( n<1, 0, -(-1)^max( 1, valuation( n, 2)) * sumdiv(n, d, kronecker( -12, d)))};
(PARI) {a(n) = if( n<1, 0, direuler( p=2, n, if( p==2, 1 + X / (1 + X), 1 / ((1 - X) * (1 - kronecker( -12, p) * X))))[n])};
(PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A)^3 * eta(x^12 + A)^3 / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A)^3), n))};
(PARI) {a(n) = if( n<1, 0, sumdiv(n, d, [ 0, 1, 0, 0, -2, -1, 0, 1, 2, 0, 0, -1][d%12 + 1]))}; /* Michael Somos, May 07 2015 */
(Magma) A := Basis( ModularForms( Gamma1(24), 1), 106); A[2] + A[3] + A[4] - A[5] + A[7] + 2*A[8] + A[9] + A[10]; /* Michael Somos, May 07 2015 */
KEYWORD
sign,easy,mult
AUTHOR
Michael Somos, Nov 02 2005
STATUS
approved
Expansion of (1 - psi(-q)^3 / psi(-q^3)) / 3 in powers of q where psi() is a Ramanujan theta function.
+10
3
1, -1, 1, -1, 0, -1, 2, -1, 1, 0, 0, -1, 2, -2, 0, -1, 0, -1, 2, 0, 2, 0, 0, -1, 1, -2, 1, -2, 0, 0, 2, -1, 0, 0, 0, -1, 2, -2, 2, 0, 0, -2, 2, 0, 0, 0, 0, -1, 3, -1, 0, -2, 0, -1, 0, -2, 2, 0, 0, 0, 2, -2, 2, -1, 0, 0, 2, 0, 0, 0, 0, -1, 2, -2, 1, -2, 0, -2, 2, 0, 1, 0, 0, -2, 0, -2, 0, 0, 0, 0, 4, 0, 2, 0, 0, -1, 2, -3, 0, -1, 0, 0, 2, -2, 0
OFFSET
1,7
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (1 - b(q^2)^2 / b(-q) ) / 3 in powers of q where b() is a cubic AGM function.
Moebius transform is period 12 sequence [ 1, -2, 0, 0, -1, 0, 1, 0, 0, 2, -1, 0, ...].
a(n) is multiplicative with a(2^e) = -1 unless e=0, a(3^e) = 1, a(p^e) = e + 1 if p == 1 (mod 6), a(p^e) = (1 + (-1)^e) / 2 if p == 5 (mod 6).
G.f.: Sum_{k>0} (-1)^k * (x^k + x^(3*k)) / (1 + x^k + x^(2*k)).
G.f.: ( Sum_{k>0} x^(6*k-5) / ( 1 + x^(6*k-5) ) - x^(6*k-1) / ( 1 + x^(6*k-1) )).
a(n) = -(-1)^n * A035178(n). -3 * a(n) = A132973(n) unless n = 0.
a(2*n) = -A035178(n). a(2*n + 1) = A033762(n). a(3*n) = a(n). a(3*n + 1) = A227696(n).
a(4*n + 1) + A112604(n). a(4*n + 3) = A112605(n). a(6*n + 1) = A097195(n). a(6*n + 5) = 0.
a(8*n + 1) = A112606(n). a(8*n + 3) = A112608(n). a(8*n + 5) = 2 * A112607(n-1). a(8*n + 7) = 2 * A112609(n).
a(12*n + 1) = A123884(n). a(12*n + 7) = 2 * A121361(n).
a(24*n + 1) = A131961(n). a(24*n + 7) = 2 * A131962(n). a(24*n + 13) = 2 * A131963(n). a(24*n + 19) = 2 * A131964(n).
EXAMPLE
G.f. = q - q^2 + q^3 - q^4 - q^6 + 2*q^7 - q^8 + q^9 - q^12 + 2*q^13 + ...
MATHEMATICA
a[ n_] := If[ n < 1, 0, -(-1)^n DivisorSum[n, KroneckerSymbol[ -12, #] &]]; (* Michael Somos, May 06 2015 *)
a[ n_] := SeriesCoefficient[ (4 + EllipticTheta[ 2, Pi/4, q^(1/2)]^3 / EllipticTheta[ 2, Pi/4, q^(3/2)]) / 6, {q, 0, n}]; (* Michael Somos, May 06 2015 *)
a[ n_] := If[ n < 1, 0, DivisorSum[ n, {1, -2, 0, 0, -1, 0, 1, 0, 0, 2, -1, 0}[[Mod[#, 12, 1]]] &]]; (* Michael Somos, May 07 2015 *)
PROG
(PARI) {a(n) = if( n<1, 0, -(-1)^n * sumdiv(n, d, kronecker(-12, d)))};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 - eta(x + A)^3 * eta(x^4 + A)^3 * eta(x^6 + A) / (eta(x^2 + A)^3 * eta(x^3 + A) * eta(x^12 + A))) / 3, n))}; /* Michael Somos, May 06 2015 */
KEYWORD
sign,mult
AUTHOR
Michael Somos, Jan 29 2008
STATUS
approved

Search completed in 0.010 seconds