[go: up one dir, main page]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a132186 -id:a132186
Displaying 1-10 of 11 results found. page 1 2
     Sort: relevance | references | number | modified | created      Format: long | short | data
A086907 Duplicate of A132186. +20
0
1, 2, 8, 58, 802, 20834, 1051586, 102233986, 19614424834, 7355623374338 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
CROSSREFS
KEYWORD
dead
STATUS
approved
A290516 Number of diagonalizable n X n matrices over GF(3). +10
5
1, 3, 39, 2109, 417153, 346720179, 1233891662727, 17484682043488557, 1077565432934756756289, 290674711165255613845226787, 320439909778519092353160948081831, 1554385919734090411686737202215725913181, 33245671345010828575975932818988836416481765697 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..56
Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
FORMULA
a(n)/A053290(n) is the coefficient of x^n in (Sum_{n>=0} x^n/A053290(n))^3.
MATHEMATICA
nn = 12; g[ n_] := (q - 1)^n q^Binomial[n, 2] FunctionExpand[
QFactorial[n, q]] /. q -> 3; G[z_] := Sum[z^k/g[k], {k, 0, nn}]; Table[g[n], {n, 0, nn}] CoefficientList[Series[G[z]^3, {z, 0, nn}], z]
CROSSREFS
Row sums of A296605.
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Aug 04 2017
STATUS
approved
A296548 Triangle read by rows: T(n,k) is the number of diagonalizable n X n matrices over GF(2) that have rank k, n >= 0, 0 <= k <= n. +10
5
1, 1, 1, 1, 6, 1, 1, 28, 28, 1, 1, 120, 560, 120, 1, 1, 496, 9920, 9920, 496, 1, 1, 2016, 166656, 714240, 166656, 2016, 1, 1, 8128, 2731008, 48377856, 48377856, 2731008, 8128, 1, 1, 32640, 44216320, 3183575040, 13158776832, 3183575040, 44216320, 32640, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
Equivalently, T(n,k) is the number of n X n matrices, P, over GF(2) with rank k, such that P^2 = P.
Equivalently, T(n,k) is the number of direct sum decompositions of the vector space GF(2)^n into exactly two subspaces U and W such that the dimension of U is k.
LINKS
Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
FORMULA
T(n,k)/A002884(n) is the coefficient of y^k*x^n in the expansion of Sum_{n>=0} x^n\A002884(n) * Sum_{n>=0} y*x^n\A002884(n).
T(n,k) = A002884(n)/(A002884(k)*A002884(n-k)) = A022166(n,k)*2^(k(n-k)).
EXAMPLE
Triangle begins:
1;
1, 1;
1, 6, 1;
1, 28, 28, 1;
1, 120, 560, 120, 1;
1, 496, 9920, 9920, 496, 1;
1, 2016, 166656, 714240, 166656, 2016, 1;
MATHEMATICA
nn = 8; g[n_] := (q - 1)^n q^Binomial[n, 2] FunctionExpand[
QFactorial[n, q]] /. q -> 2; Grid[Map[Select[#, # > 0 &] &,
Table[g[n], {n, 0, nn}] CoefficientList[Series[Sum[(u z)^r/g[r] , {r, 0, nn}] Sum[z^r/g[r], {r, 0, nn}], {z, 0, nn}], {z, u}]]]
CROSSREFS
Cf. A132186 (row sums).
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Dec 15 2017
STATUS
approved
A346222 Number of semi-simple n X n matrices over GF(2). +10
2
1, 2, 10, 218, 25426, 11979362, 24071588290, 195647202043778, 6352629358366433026, 829377572450912758955522, 434523953108209440907114707970, 911402584183760891982341170891585538, 7638756947617134519287879000741815013863426, 256253116935172010151547980961815772566257949204482 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Equivalently, number of n X n matrices over GF(2) that are diagonalizable over the algebraic closure of GF(2).
Equivalently, the number of n X n matrices over GF(2) whose minimal polynomial is a product of distinct irreducible factors, i.e., the minimal polynomial is squarefree.
LINKS
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
FORMULA
Sum_{n>=0} a(n)x^n/A002884(n) = Product_{d>=1} Sum_{j>=1} x^(j*d)/|GL_j(F_2^d)|)^A001037(d) where |GL_j(F_2^d)| is the order of the general linear group of degree j over the field with 2^d elements.
MATHEMATICA
nn = 13; q = 2; A001037 =Table[1/n Sum[MoebiusMu[n/d] q^d, {d, Divisors[n]}], {n, 1, nn}]; \[Gamma]q[j_, d_] :=Table[Product[(q^d)^n - (q^d)^i, {i, 0, n - 1}], {n, 1, nn}][[j]]; Table[Product[q^n - q^i, {i, 0, n - 1}], {n, 0, nn}] CoefficientList[ Series[Product[(1 + Sum[u^(j d)/\[Gamma]q[j, d], {j, 1, nn}])^
A001037[[d]], {d, 1, nn}], {u, 0, nn}], u]
CROSSREFS
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Jul 11 2021
STATUS
approved
A086922 Number of idempotent n X n (0,1) matrices over the reals. +10
1
1, 2, 8, 50, 452, 5682, 96608, 2185738, 65108492 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
From Torlach Rush, Jun 18 2020: (Start)
Let m(n,k) be the number of idempotent n X n (0,1) matrices with k entries equal to 1. Then:
k | m(n,k)
-----|------------------------------------------------------
0 | 1
1 | n
2 | A028895(n - 1)
3 | 19 * A000292(n - 2)
4 | ((n - 3) (n - 2) (n - 1) (35 n - 124))/8
5 | ((n - 4) (n - 3) (n - 2) (n - 1) (631 n - 2675))/120
...
Conjecture: There is no closed form expression for this sequence.
(End)
LINKS
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 19 2003
EXTENSIONS
a(5)-a(6) from Torlach Rush, Jun 17 2020
a(7)-a(8) from A222821 added by Giovanni Resta, Jun 23 2020
STATUS
approved
A342245 Number of ordered pairs (S,T) of n X n idempotent matrices over GF(2) such that ST = TS = S. +10
1
1, 3, 21, 339, 12483, 1074339, 219474243, 107174166147, 126918737362179, 367662330459585027, 2614066808849501254659, 45985259502347910886975491, 2009925824909891218929491103747, 218411680908756813835229484489351171 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
The components in the ordered pairs are not necessarily distinct.
The relation S<=T iff ST=TS=S gives a partial ordering on the idempotent matrices enumerated in A132186. Each length k chain (from bottom to top) in the poset corresponds to an ordered direct sum decomposition of GF(2)^n into exactly k subspaces.
LINKS
FORMULA
Let E(x) = Sum_{n>=0} x^n/(2^binomial(n,2) * [n]_2!) where [n]_2! = A005329(n). Then E(x)^3 = Sum_{n>=0} a(n)x^n/(2^binomial(n,2) * [n]_2!)
MATHEMATICA
nn = 13; b[n_] := q^Binomial[n, 2] FunctionExpand[QFactorial[n, q]] /. q -> 2;
e[x_] := Sum[x^n/b[n], {n, 0, nn}]; Table[b[n], n, 0, nn}]CoefficientList[Series[e[x]^3, {x, 0, nn}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Mar 07 2021
STATUS
approved
A285053 Multiplications between idempotent equivalence classes for n X n matrices over GF(2). +10
0
1, 4, 118, 27080 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
With the n X n matrices over GF(2) construct 3-tuples (a,b,c) where a*b = c. Map each of the three elements to their idempotent under self multiplication. Filter on unique 3-tuples.
LINKS
CROSSREFS
The idempotents are enumerated in A132186.
KEYWORD
nonn,more
AUTHOR
Chad Brewbaker, Apr 08 2017
STATUS
approved
A346201 Triangular array read by rows. T(n,k) is the number of n X n matrices over GF(2) such that the sum of the dimensions of their eigenspaces taken over all eigenvalues is k, 0 <= k <= n, n >= 0. +10
0
1, 0, 2, 2, 6, 8, 48, 196, 210, 58, 5824, 23280, 27020, 8610, 802, 2887680, 11550848, 13756560, 4757260, 581250, 20834, 5821595648, 23286380544, 28097284992, 10075582800, 1369706604, 67874562, 1051586, 47317927329792, 189271709384704, 229853403924480, 83865929653632, 11957394226896, 668707460652, 14779207170, 102233986 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
EXAMPLE
1;
0, 2;
2, 6, 8;
48, 196, 210, 58;
5824, 23280, 27020, 8610, 802;
2887680, 11550848, 13756560, 4757260, 581250, 20834;
MATHEMATICA
nn = 8; q = 2; b[p_, i_] := Count[p, i]; d[p_, i_] := Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}]; aut[deg_, p_] := Product[Product[q^(d[p, i] deg) - q^((d[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1, Total[p]}]; A001037 =
Table[1/n Sum[MoebiusMu[n/d] q^d, {d, Divisors[n]}], {n, 1, nn}]; g[u_, v_] :=
Total[Map[v^Length[#] u^Total[#]/aut[1, #] &, Level[Table[IntegerPartitions[n], {n, 0, nn}], {2}]]]; Table[Take[(Table[Product[q^n - q^i, {i, 0, n - 1}], {n, 0, nn}] CoefficientList[Series[g[u, v] g[u, v] Product[Product[1/(1 - (u/q^r)^d), {r, 1, \[Infinity]}]^A001037[[d]], {d, 2, nn}], {u, 0, nn}], {u, v}])[[n]],
n], {n, 1, nn}] // Grid
CROSSREFS
Cf. A002820 (column k=0), A132186 (main diagonal), A002416 (row sums).
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Jul 16 2021
STATUS
approved
A346677 Triangular array read by rows. T(n,k) is the number of n X n matrices over GF(2) that can be decomposed as the direct sum of k cyclic matrices, 0<=k<=n, n>=0. +10
0
1, 0, 2, 0, 8, 8, 0, 132, 322, 58, 0, 10752, 36412, 17570, 802, 0, 3185280, 16923024, 11693324, 1731970, 20834, 0, 5279662080, 26989750656, 30003846992, 6109974636, 335190786, 1051586, 0, 28343145922560, 196717668747264, 247267921788288, 84586214764240, 5906325116460, 128574848514, 102233986 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
Joseph Kung, The Cycle Structure of a Linear Transformation over a Finite Field, Linear Algebra and its Applications, Vol 36, 1981, pages 141-155.
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
EXAMPLE
Triangle begins:
1;
0, 2;
0, 8, 8;
0, 132, 322, 58;
0, 10752, 36412, 17570, 802;
0, 3185280, 16923024, 11693324, 1731970, 20834;
...
MATHEMATICA
nn = 6; q = 2; b[p_, i_] := Count[p, i];
d[p_, i_] := Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}];
aut[deg_, p_] := Product[Product[q^(d[p, i] deg) - q^((d[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1, Total[p]}];
A001037 = Table[1/n Sum[MoebiusMu[n/d] q^d, {d, Divisors[n]}], {n, 1, nn}];
g[u_, v_, deg_] := Total[Map[v^Length[#] u^(deg Total[#])/aut[deg, #] &, Level[Table[IntegerPartitions[n], {n, 0, nn}], {2}]]];
Table[Take[(Table[Product[q^n - q^i, {i, 0, n - 1}], {n, 0, nn}] CoefficientList[Series[Product[g[u, v, deg]^A001037[[deg]], {deg, 1, nn}], {u, 0, nn}], {u, v}])[[n]], n], {n, 1, nn}] // Grid
CROSSREFS
Cf. A002416 (row sums) A132186 (main diagonal).
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Jul 28 2021
STATUS
approved
A357410 a(n) is the number of covering relations in the poset P of n X n idempotent matrices over GF(2) ordered by A <= B if and only if AB = BA = A. +10
0
0, 1, 12, 224, 6960, 397792, 42001344, 8547291008, 3336917303040, 2565880599084544, 3852698988517260288, 11517943538435677485056, 67829192662051610706309120, 799669932659456441970547744768, 18652191511341505602408972738871296, 873360272626100960024734923878091948032 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
The order given for P in the title is equivalent to the ordering: A <= B if and only if image(A) is contained in image(B) and null(A) contains null(B). Then A is covered by B if and only if there is a 1-dimensional subspace U such that image(B) = image(A) direct sum U. If such a subspace U exists then it is unique and is equal to the intersection of null(A) with image(B). The number of maximal chains in P is A002884(n). The set of all idempotent matrices over GF(q) with this ordering is a binomial poset with factorial function |GL_n(F_q)|/(q-1)^n. (see Stanley reference).
REFERENCES
R. P. Stanley, Enumerative Combinatorics, Vol I, second edition, page 320.
LINKS
FORMULA
Sum_{n>=0} a(n) x^n/B(n) = x * (Sum_{n>=0} x^n/B(n))^2 where B(n) = A002884(n).
EXAMPLE
a(2) = 12 because there are A132186(2) = 8 idempotent 2 X 2 matrices over GF(2). The identity matrix covers 6 rank 1 matrices each of which covers the zero matrix for a total of 12 covering relations. Cf. A296548.
MATHEMATICA
nn = 15; B[q_, n_] := Product[q^n - q^i, {i, 0, n - 1}]/(q - 1)^n;
e[q_, u_] := Sum[u^n/B[q, n], {n, 0, nn}]; Table[B[2, n], {n, 0, nn}] CoefficientList[Series[e[2, u] u e[2, u], {u, 0, nn}], u]
CROSSREFS
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Sep 26 2022
STATUS
approved
page 1 2

Search completed in 0.011 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 29 21:13 EDT 2024. Contains 375518 sequences. (Running on oeis4.)