[go: up one dir, main page]

login
Search: a131111 -id:a131111
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle read by rows: T(n,k) = 7*binomial(n,k) for 1 <= k <= n with T(n,n) = 1 for n >= 0.
+10
7
1, 7, 1, 7, 14, 1, 7, 21, 21, 1, 7, 28, 42, 28, 1, 7, 35, 70, 70, 35, 1, 7, 42, 105, 140, 105, 42, 1, 7, 49, 147, 245, 245, 147, 49, 1, 7, 56, 196, 392, 490, 392, 196, 56, 1, 7, 63, 252, 588, 882, 882, 588, 252, 63, 1, 7, 70, 315, 840, 1470, 1764, 1470, 840, 315, 70, 1
OFFSET
0,2
COMMENTS
Row sums give A048489.
Non-diagonal entries of Pascal's triangle are multiplied by 7. - Emeric Deutsch, Jun 20 2007
The matrix inverse starts
1;
-7, 1;
91, -14, 1;
-1771, 273, -21, 1;
45955, -7084, 546, -28, 1;
-1490587, 229775, -17710, 910, -35, 1;
58018051, -8943522, 689325, -35420, 1365, -42, 1;
-2634606331, 406126357, -31302327, 1608425, -61985, 1911, -49, 1;
... - R. J. Mathar, Mar 15 2013
FORMULA
G.f.: (1 + 6*x - t*x)/((1-t*x)*(1-x-t*x)). - Emeric Deutsch, Jun 20 2007
EXAMPLE
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
1;
7, 1;
7, 14, 1;
7, 21, 21, 1;
7, 28, 42, 28, 1;
7, 35, 70, 70, 35, 1;
...
MAPLE
T := proc (n, k) if k < n then 7*binomial(n, k) elif k = n then 1 else 0 end if end proc; for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form - Emeric Deutsch, Jun 20 2007
MATHEMATICA
Table[If[k==n, 1, 7*Binomial[n, k]], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 18 2019 *)
PROG
(PARI) T(n, k)=if(k==n, 1, 7*binomial(n, k)) \\ Charles R Greathouse IV, Jan 16 2012
(Magma) [k eq n select 1 else 7*Binomial(n, k): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 18 2019
(Sage)
@CachedFunction
def T(n, k):
if (k==n): return 1
else: return 7*binomial(n, k)
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 18 2019
(GAP)
T:= function(n, k)
if k=n then return 1;
else return 7*Binomial(n, k);
fi; end;
Flat(List([0..10], n-> List([0..n], k-> T(n, k) ))); # G. C. Greubel, Nov 18 2019
KEYWORD
nonn,tabl,easy,less
AUTHOR
Gary W. Adamson, Jun 15 2007
EXTENSIONS
Corrected and extended by Emeric Deutsch, Jun 20 2007
STATUS
approved
T(n,k) = 4*binomial(n,k) - 3*I(n,k), where I is the identity matrix; triangle T read by rows (n >= 0 and 0 <= k <= n).
+10
6
1, 4, 1, 4, 8, 1, 4, 12, 12, 1, 4, 16, 24, 16, 1, 4, 20, 40, 40, 20, 1, 4, 24, 60, 80, 60, 24, 1, 4, 28, 84, 140, 140, 84, 28, 1, 4, 32, 112, 224, 280, 224, 112, 32, 1, 4, 36, 144, 336, 504, 504, 336, 144, 36, 1
OFFSET
0,2
FORMULA
T(n,k) = 4*A007318(n,k) - 3*I(n,k), where A007318 = Pascal's triangle and I = Identity matrix.
n-th row sum = A036563(n+2) = 2^(n+2) - 3.
Bivariate o.g.f.: Sum_{n,k>=0} T(n,k)*x^n*y^k = (1 + 3*x - x*y)/((1 - x*y)*(1 - x - x*y)). - Petros Hadjicostas, Feb 20 2021
EXAMPLE
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
1;
4, 1;
4, 8, 1;
4, 12, 12, 1;
4, 16, 24, 16, 1;
4, 20, 40, 40, 20, 1;
...
MAPLE
seq(seq(`if`(k=n, 1, 4*binomial(n, k)), k=0..n), n=0..10); # G. C. Greubel, Nov 18 2019
MATHEMATICA
Table[If[k==n, 1, 4*Binomial[n, k]], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 18 2019 *)
PROG
(PARI) T(n, k) = if(k==n, 1, 4*binomial(n, k)); \\ G. C. Greubel, Nov 18 2019
(Magma) [k eq n select 1 else 4*Binomial(n, k): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 18 2019
(Sage)
def T(n, k):
if (k==n): return 1
else: return 4*binomial(n, k)
[[T(n, k) for k in (0..n)] for n in (0..10)]
# G. C. Greubel, Nov 18 2019
(GAP)
T:= function(n, k)
if k=n then return 1;
else return 4*Binomial(n, k);
fi; end;
Flat(List([0..10], n-> List([0..n], k-> T(n, k) ))); # G. C. Greubel, Nov 18 2019
KEYWORD
nonn,tabl,easy,less
AUTHOR
Gary W. Adamson, Jun 15 2007
STATUS
approved
T(n,k) = 6*binomial(n,k) - 5*I(n,k), where I is the identity matrix; triangle T read by rows (n >= 0 and 0 <= k <= n).
+10
5
1, 6, 1, 6, 12, 1, 6, 18, 18, 1, 6, 24, 36, 24, 1, 6, 30, 60, 60, 30, 1, 6, 36, 90, 120, 90, 36, 1, 6, 42, 126, 210, 210, 126, 42, 1, 6, 48, 168, 336, 420, 336, 168, 48, 1, 6, 54, 216, 504, 756, 756, 504, 216, 54, 1
OFFSET
0,2
COMMENTS
Row sums give A048488.
FORMULA
T(n,k) = 6*A007318(n,k) - 5*I(n,k), where A007318 = Pascal's triangle and I = Identity matrix.
Bivariate o.g.f.: Sum_{n,k>=0} T(n,k)*x^n*y^k = (1 + 5*x - x*y)/((1 - x*y)*(1 - x - x*y)).
EXAMPLE
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
1;
6, 1;
6, 12, 1;
6, 18, 18, 1;
6, 24, 36, 24, 1;
6, 30, 60, 60, 30, 1;
6, 36, 90, 120, 90, 36, 1;
...
MAPLE
seq(seq(`if`(k=n, 1, 6*binomial(n, k)), k=0..n), n=0..10); # G. C. Greubel, Nov 18 2019
MATHEMATICA
Table[If[k==n, 1, 6*Binomial[n, k]], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 18 2019 *)
PROG
(PARI) T(n, k) = if(k==n, 1, 6*binomial(n, k)); \\ G. C. Greubel, Nov 18 2019
(Magma) [k eq n select 1 else 6*Binomial(n, k): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 18 2019
(Sage)
def T(n, k):
if (k==n): return 1
else: return 6*binomial(n, k)
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 18 2019
(GAP)
T:= function(n, k)
if k=n then return 1;
else return 6*Binomial(n, k);
fi; end;
Flat(List([0..10], n-> List([0..n], k-> T(n, k) ))); # G. C. Greubel, Nov 18 2019
KEYWORD
nonn,tabl,easy,less
AUTHOR
Gary W. Adamson, Jun 15 2007
STATUS
approved

Search completed in 0.008 seconds