[go: up one dir, main page]

login
Search: a127393 -id:a127393
     Sort: relevance | references | number | modified | created      Format: long | short | data
Expansion of k/(4*q^(1/2)) in powers of q, where k defined by sqrt(k) = theta_2(0, q)/theta_3(0, q).
(Formerly M3475 N1412)
+0
22
1, -4, 14, -40, 101, -236, 518, -1080, 2162, -4180, 7840, -14328, 25591, -44776, 76918, -129952, 216240, -354864, 574958, -920600, 1457946, -2285452, 3548550, -5460592, 8332425, -12614088, 18953310, -28276968, 41904208, -61702876, 90304598, -131399624
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
k^2 is the parameter and q the Jacobi nome of elliptic functions. See, e.g., Fricke, p. 11, eq. (8) with p. 10. eq. (1). - Wolfdieter Lang, Jul 04 2016
REFERENCES
A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.
E. T. Copson, An Introduction to the Theory of Functions of a Complex Variable, 1935, Oxford University Press, p. 385.
N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; Eq. (34.3).
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
A. Cayley, A memoir on the transformation of elliptic functions, Philosophical Transactions of the Royal Society of London (1874): 397-456; Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, included in Vol. 9. [Annotated scan of pages 126-129]
R. Fricke, Die elliptischen Funktionen und ihre Anwendungen, Dritter Teil, Springer-Verlag, 2012.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (psi(x^2) / phi(x))^2 = (psi(x) / phi(x))^4 = (psi(x^2) / psi(x))^4 = (psi(-x) / psi(-x^2))^4 = (chi(-x) / chi(-x^2)^2)^4 = (chi(x)^2 * chi(-x))^-4 = (chi(x) * chi(-x^2))^-4 = (f(-x^4) / f(x))^4 in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions. - Michael Somos, Feb 26 2012
G.f. A(x) satisfies 1 = (1 - 16 * x * A(x)^2) * (1 + 16 * x * A(-x)^2). - Michael Somos, Mar 26 2004
Expansion of q^(-1/2) * (eta(q) * eta(q^4)^2 / eta(q^2)^3)^4 in powers of q.
Euler transform of period 4 sequence [ -4, 8, -4, 0, ...].
Given g.f. A(x), then B(q) = q * A(q^2) satisfies 0 = f(B(q), B(q^2)) where f(u, v) = v - (u * (1 + 4*v))^2. - Michael Somos, Mar 26 2004
G.f. A(q) satisfies A(q) = sqrt(A(q^2)) / (1 + 4*q*A(q^2)); together with limit_{n->infinity} A(x^n) = 1 this gives a fast algorithm to compute the series. [Joerg Arndt, Aug 06 2011]
G.f.: (Product_{k>0} (1 + x^(2*k)) / (1 + x^(2*k - 1)))^4.
a(n) = (-1)^n * A093160(n). Convolution square of A079006.
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 1/4 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A139820. - Michael Somos, Jun 04 2015
G.f.: ((Sum_{n >= 0} x^(n*(n+1))) / (1 + Sum_{n >= 1} x^(n^2)))^4 (from the sum representation of the Jacobi theta functions evaluated at vanishing argument). - Wolfdieter Lang, Jul 04 2016
a(n) ~ (-1)^n * exp(sqrt(2*n)*Pi) / (32 * 2^(1/4) * n^(3/4)). - Vaclav Kotesovec, Nov 15 2017
EXAMPLE
G.f. = 1 - 4*x + 14*x^2 - 40*x^3 + 101*x^4 - 236*x^5 + 518*x^6 - 1080*x^7 + ...
G.f. of B(q) = q * A(q^2): q - 4*q^3 + 14*q^5 - 40*q^7 + 101*q^9 - 236*q^11 + 518*q^13 - 1080*q^15 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[ -x, x^2] QPochhammer[ x^2, x^4])^4, {x, 0, n}]; (* Michael Somos, Sep 24 2011 *)
a[ n_] := SeriesCoefficient[ (QPochhammer[ x^4] / QPochhammer[ -x])^4, {x, 0, n}]; (* Michael Somos, Sep 24 2011 *)
a[ n_] := SeriesCoefficient[ (Product[ 1 - x^k, {k, 4, n, 4}] / Product[ 1 - (-x)^k, {k, n}])^4, {x, 0, n}]; (* Michael Somos, Sep 24 2011 *)
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, q^(1/2)] / (2 EllipticTheta[ 3, 0, q]))^4, {q, 0, n + 1/2}]; (* Michael Somos, Sep 24 2011 *)
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, q] / EllipticTheta[ 2, 0, q^(1/2)])^4, {q, 0, n + 1/2}]; (* Michael Somos, Sep 24 2011 *)
PROG
(PARI) {a(n) = my(A, A2, m); if( n<0, 0, n = 2*n + 1; A = x + O(x^3); m=2; while( m<n, m*=2; A = subst(A, x, x^2); A = sqrt(A) / (1 + 4*A)); polcoeff(A, n))}; /* Michael Somos, Mar 26 2004 */
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A)^2 / eta(x^2 + A)^3)^4, n))}; /* Michael Somos, Mar 26 2004 */
KEYWORD
sign,easy,nice
EXTENSIONS
Edited by N. J. A. Sloane, Mar 31 2007
STATUS
approved
Expansion of (phi(-q) / phi(q^2))^2 in powers of q where phi() is a Ramanujan theta function.
+0
3
1, -4, 0, 16, 0, -56, 0, 160, 0, -404, 0, 944, 0, -2072, 0, 4320, 0, -8648, 0, 16720, 0, -31360, 0, 57312, 0, -102364, 0, 179104, 0, -307672, 0, 519808, 0, -864960, 0, 1419456, 0, -2299832, 0, 3682400, 0, -5831784, 0, 9141808, 0, -14194200, 0, 21842368, 0
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (eta(q)^2 * eta(q^2) * eta(q^8)^2 / eta(q^4)^5)^2 in powers of q.
Euler transform of period 8 sequence [ -4, -6, -4, 4, -4, -6, -4, 0, ...].
a(2*n) = 0 unless n=0. a(2*n + 1) = -4 * A001938(n) = -A127393(n).
a(n) = (-1)^n * A134746(n).
Convolution inverse of A131126. Convolution square of A210030.
Empirical: Sum_{n>=0} a(n)/exp(2*Pi*n) = -32 - 24*sqrt(2) + 4*sqrt(140+99*sqrt(2)). - Simon Plouffe, Mar 02 2021
EXAMPLE
1 - 4*q + 16*q^3 - 56*q^5 + 160*q^7 - 404*q^9 + 944*q^11 - 2072*q^13 + ...
MATHEMATICA
a[n_] := SeriesCoefficient[(EllipticTheta[3, 0, -q]/EllipticTheta[3, 0, q^2])^2, {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Nov 29 2017 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^2 * eta(x^2 + A) * eta(x^8 + A)^2 / eta(x^4 + A)^5)^2, n))}
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Mar 16 2012
STATUS
approved
Expansion of 1+k in powers of q^(1/2) where q is Jacobi's nome and k is the elliptic modulus.
+0
4
1, 4, 0, -16, 0, 56, 0, -160, 0, 404, 0, -944, 0, 2072, 0, -4320, 0, 8648, 0, -16720, 0, 31360, 0, -57312, 0, 102364, 0, -179104, 0, 307672, 0, -519808, 0, 864960, 0, -1419456, 0, 2299832, 0, -3682400, 0, 5831784, 0, -9141808, 0, 14194200, 0, -21842368, 0
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (phi(q) / phi(q^2))^2 in powers of q where phi() is a Ramanujan theta function.
Expansion of (eta(q^8) / eta(q))^4 * (eta(q^2) / eta(q^4))^14 in powers of q.
Euler transform of period 8 sequence [ 4, -10, 4, 4, 4, -10, 4, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 2 g(t) where q = exp(2 Pi i t) and g() is the g.f. of A210066.
G.f.: ( (Sum_{k in Z} x^(k^2)) / (Sum_{k in Z} x^(2*k^2)) )^2 = ( Product_{k>0} (1 + x^k)^2 * (1 + x^(4*k))^2 / (1 + x^(2*k))^5 )^2.
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (2 - v)^2 - u * (2 - u) * v^2.
a(2*n) = 0 unless n=0. a(2*n + 1) = 4 * A001938(n) = A127393(n).
a(n) = (-1)^n * A210067(n). Convolution inverse of A210066. - Michael Somos, Oct 16 2015
Empirical: Sum_{n>=0} a(n)/exp(2*Pi*n) = 34 + 24*sqrt(2) - 4*sqrt(140 + 99*sqrt(2)). - Simon Plouffe, Mar 04 2021
EXAMPLE
G.f. = 1 + 4*q - 16*q^3 + 56*q^5 - 160*q^7 + 404*q^9 - 944*q^11 + 2072*q^13 + ...
MATHEMATICA
CoefficientList[Series[(QPochhammer[x^8]/QPochhammer[x])^4 (QPochhammer[x^2]/QPochhammer[x^4])^14, {x, 0, 50}], x] (* Jan Mangaldan, Mar 21 2013 *)
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] / EllipticTheta[ 3, 0, q^2])^2, {q, 0, n}]; (* Michael Somos, Oct 16 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( ( (eta(x^8 + A) / eta(x + A))^2 * (eta(x^2 + A) / eta(x^4 + A))^7 )^2, n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Nov 07 2007
STATUS
approved

Search completed in 0.009 seconds