OFFSET
1,4
COMMENTS
The term is due to Cosgrave & Dilcher. The Gauss factorial should not be confused with the q-factorial [n]_q! which is also called Gaussian factorial.
LINKS
Alois P. Heinz, Antidiagonals n = 1..141, flattened
J. B. Cosgrave, K. Dilcher, Extensions of the Gauss-Wilson Theorem, Integers: Electronic Journal of Combinatorial Number Theory, 8 (2008).
J. B. Cosgrave, K. Dilcher, An Introduction to Gauss Factorials, The American Mathematical Monthly, Vol. 118, No. 9 (2011), 812-829.
K. Dilcher, Gauss Factorials: Properties and Applications. Video by the Irmacs Centre, May 18, 2011.
FORMULA
N_n! = product_{1<=j<=N, GCD(j,n)=1} j.
EXAMPLE
[n\N][0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
------------------------------------------------------------
[ 1] 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800 [A000142]
[ 3] 1, 1, 2, 2, 8, 40, 40, 280, 2240, 2240, 22400 [A232980]
[ 4] 1, 1, 1, 3, 3, 15, 15, 105, 105, 945, 945
[ 5] 1, 1, 2, 6, 24, 24, 144, 1008, 8064, 72576, 72576 [A232981]
[ 6] 1, 1, 1, 1, 1, 5, 5, 35, 35, 35, 35 [A232982]
[ 7] 1, 1, 2, 6, 24, 120, 720, 720, 5760, 51840, 518400 [A232983]
[ 8] 1, 1, 1, 3, 3, 15, 15, 105, 105, 945, 945
[ 9] 1, 1, 2, 2, 8, 40, 40, 280, 2240, 2240, 22400
[ 10] 1, 1, 1, 3, 3, 3, 3, 21, 21, 189, 189 [A232984]
[ 11] 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800 [A232985]
[ 12] 1, 1, 1, 1, 1, 5, 5, 35, 35, 35, 35
[ 13] 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800
MAPLE
A:= (n, N)-> mul(`if`(igcd(j, n)=1, j, 1), j=1..N):
seq(seq(A(n, d-n), n=1..d), d=1..12); # Alois P. Heinz, Oct 03 2012
MATHEMATICA
GaussFactorial[m_, n_] := Product[ If[ GCD[j, n] == 1, j, 1], {j, 1, m}]; Table[ GaussFactorial[m - n, n], {m, 1, 12}, {n, 1, m}] // Flatten (* Jean-François Alcover, Mar 18 2013 *)
PROG
(Sage)
def Gauss_factorial(N, n): return mul(j for j in (1..N) if gcd(j, n) == 1)
for n in (1..13): [Gauss_factorial(N, n) for N in (0..10)]
(PARI) T(m, n)=prod(k=2, m, if(gcd(k, n)==1, k, 1))
for(s=1, 10, for(n=1, s, print1(T(s-n, n)", "))) \\ Charles R Greathouse IV, Oct 01 2012
CROSSREFS
A000142(n) = n! = Gauss_factorial(n, 1).
A001147(n) = Gauss_factorial(2*n, 2).
A055634(n) = Gauss_factorial(n, 2)*(-1)^n.
A001783(n) = Gauss_factorial(n, n).
A124441(n) = Gauss_factorial(floor(n/2), n).
A124442(n) = Gauss_factorial(n, n)/Gauss_factorial(floor(n/2), n).
A066570(n) = Gauss_factorial(n, 1)/Gauss_factorial(n, n).
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Oct 01 2012
STATUS
approved