[go: up one dir, main page]

login
Search: a123295 -id:a123295
     Sort: relevance | references | number | modified | created      Format: long | short | data
Sum of 13 positive 5th powers.
+10
4
13, 44, 75, 106, 137, 168, 199, 230, 255, 261, 286, 292, 317, 323, 348, 354, 379, 385, 410, 416, 441, 472, 497, 503, 528, 534, 559, 565, 590, 596, 621, 627, 652, 683, 714, 739, 745, 770, 776, 801, 807, 832, 838, 863, 894, 925, 956, 981, 987, 1012, 1018, 1036
OFFSET
1,1
COMMENTS
Up to 416 = 13*(2^5) this sequence is identical to x+1 for x in A003357 Sum of 12 positive 5th powers. Primes in this sequence (13, 137, 199, 317, ...) are A123299. As proved by J.-R. Chen in 1964, g(5) = 37, so every positive integer can be written as the sum of no more than 37 positive 5th powers. G(5) <= 17, bounding the least integer G(5) such that every positive integer beyond a certain point (i.e., all but a finite number) is the sum of G(5) 5th powers.
LINKS
Eric Weisstein's World of Mathematics, Waring's Problem.
EXAMPLE
a(1) = 13 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5.
a(2) = 44 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5.
a(9) = 255 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 3^5.
a(11) = 286 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 3^5
MATHEMATICA
up = 1500; q = Range[up^(1/5)]^5; a = {0}; Do[b = Select[ Union@ Flatten@ Table[e + a, {e, q}], # <= up &]; a = b, {k, 13}]; a (* Giovanni Resta, Jun 12 2016 *)
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Sep 24 2006
EXTENSIONS
Two missing terms and more terms from Giovanni Resta, Jun 12 2016
STATUS
approved
Prime sums of 13 positive 5th powers.
+10
4
13, 137, 199, 317, 379, 503, 683, 739, 863, 1049, 1129, 1223, 1229, 1409, 1433, 1471, 1613, 1619, 1831, 1949, 1979, 2011, 2221, 2339, 2543, 2549, 2729, 2791, 2909, 2917, 2971, 3089, 3137, 3299, 3307, 3323, 3331, 3361, 3511, 3541, 3659, 3863, 3877, 3931, 4049
OFFSET
1,1
LINKS
FORMULA
A000040 INTERSECTION A123299.
EXAMPLE
a(1) = 13 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5.
a(2) = 137 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5.
a(3) = 199 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5.
a(4) = 317 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 3^5.
MATHEMATICA
up = 4100; q = Range[up^(1/5)]^5; a = {0}; Do[b = Select[ Union@ Flatten@ Table[e + a, {e, q}], # <= up &]; a = b, {k, 13}]; Select[a, PrimeQ] (* Giovanni Resta, Jun 12 2016 *)
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Sep 24 2006
EXTENSIONS
a(10)-a(45) from Giovanni Resta, Jun 12 2016
STATUS
approved
Prime sums of 14 positive 5th powers.
+10
2
107, 293, 349, 653, 659, 839, 1013, 1019, 1223, 1279, 1409, 1559, 1583, 1621, 1801, 1831, 1949, 2011, 2129, 2153, 2309, 2333, 2339, 2347, 2371, 2551, 2699, 2707, 2731, 2879, 2917, 3083, 3121, 3169, 3191, 3301, 3331, 3449, 3457, 3511, 3541, 3659, 3691, 3761, 3847, 4019, 4027, 4051
OFFSET
1,1
LINKS
FORMULA
A000040 INTERSECTION A123295.
EXAMPLE
a(1) = 107 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5.
a(2) = 293 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5.
a(3) = 349 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 3^5.
a(4) = 653 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5 + 3^5.
MATHEMATICA
up = 5000; q = Range[up^(1/5)]^5; a={0}; Do[b = Select[Union@ Flatten@ Table[e + a, {e, q}], # <= up &]; a = b, {k, 14}]; Select[a, PrimeQ] (* Giovanni Resta, Jun 12 2016 *)
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Sep 25 2006
EXTENSIONS
More terms from Harvey P. Dale, Jan 01 2015
4 missing terms from Giovanni Resta, Jun 12 2016
STATUS
approved

Search completed in 0.005 seconds