[go: up one dir, main page]

login
Search: a115125 -id:a115125
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ...+ a(n-1)*a(1) for n >= 2. Also a(n) = (2^n)*C(n-1), where C = A000108 (Catalan numbers).
+10
13
2, 4, 16, 80, 448, 2688, 16896, 109824, 732160, 4978688, 34398208, 240787456, 1704034304, 12171673600, 87636049920, 635361361920, 4634400522240, 33985603829760, 250420238745600, 1853109766717440, 13765958267043840, 102618961627054080, 767411365211013120
OFFSET
1,1
COMMENTS
Number of generators of degree n of the Hopf algebra of 2-colored planar binary trees. Also, dimensions of the graded components of the primitive Lie algebra of the same Hopf algebra. - Jean-Yves Thibon (jyt(AT)univ-mlv.fr), Jun 26 2008
LINKS
Suzanne Bobzien, The combinatorics of the Stoic conjunction: Hipparchus refuted and Chrysippus vindicated, Oxford Studies in Ancient Philosophy, Vol. XL, Summer 2011, pp. 157-188.
L. Guo and W. Y. Sit, Enumeration and generating functions of Rota-Baxter Words, Math. Comput. Sci. 4 (2010) 313-337, remark 3.3.
Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy]
FORMULA
G.f.: (1-sqrt(1-8*x))/2. - Michael Somos, Jun 08 2000
Given g.f. C(x) and given A(x)= g.f. of A100238, then B(x)=A(x)-1-x satisfies B(x)=x-C(x*B(x)). - Michael Somos, Sep 07 2005
n*a(n) + 4*(-2*n+3)*a(n-1) = 0. - R. J. Mathar, Feb 25 2015
MAPLE
a:= n-> (2^n)*binomial(2*n-2, n-1)/n:
seq(a(n), n=1..25); # Alois P. Heinz, Jan 27 2012
MATHEMATICA
InverseSeries[Series[y/2-y^2/2, {y, 0, 24}], x] (* then A(x)=y(x) *) (* Len Smiley, Apr 13 2000 *)
a[n_] := 2^n*CatalanNumber[n - 1]; Table[a[n], {n, 1, 23}] (* Jean-François Alcover, Jul 09 2013 *)
PROG
(PARI) a(n)=polcoeff((1-sqrt(1-8*x+x*O(x^n)))/2, n)
(Magma) [2^n*Catalan(n-1): n in [1..30]]; // Vincenzo Librandi, Nov 06 2016
CROSSREFS
Essentially identical to A115125.
KEYWORD
nonn,easy
EXTENSIONS
Typo in definition corrected by R. J. Mathar, Aug 11 2008
STATUS
approved

Search completed in 0.006 seconds