[go: up one dir, main page]

login
Search: a115005 -id:a115005
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = Sum_{i=1..n, j=1..n, gcd(i,j)=1} (n+1-i)*(n+1-j).
+10
96
1, 8, 31, 80, 179, 332, 585, 948, 1463, 2136, 3065, 4216, 5729, 7568, 9797, 12456, 15737, 19520, 24087, 29308, 35315, 42120, 50073, 58920, 69025, 80264, 92871, 106756, 122475, 139528, 158681, 179608, 202529, 227400, 254597, 283784, 315957, 350576, 387977
OFFSET
1,2
COMMENTS
Also (1/4) * number of ways to select 3 distinct points forming a triangle of unsigned area = 1/2 from a square of grid points with side length n. Diagonal of triangle A320541. - Hugo Pfoertner, Oct 22 2018
From Chai Wah Wu, Aug 18 2021: (Start)
Theorem: a(n) = n^2 + Sum_{i=2..n} (n+1-i)*(2*n+2-i)*phi(i).
Proof: Since gcd(n,n) = 1 if and only if n = 1, Sum_{i=1..n, j=1..n, gcd(i,j)=1} (n+1-i)*(n+1-j) = n^2 + Sum_{i=1..n, j=1..n, gcd(i,j)=1, (i,j) <> (1,1)} (n+1-i)*(n+1-j)
= n^2 + Sum_{i=2..n, j=1..i, gcd(i,j)=1} (n+1-i)*(n+1-j) + Sum_{j=2..n, i=1..j, gcd(i,j)=1} (n+1-i)*(n+1-j) = n^2 + 2*Sum_{i=2..n, j=1..i, gcd(i,j)=1} (n+1-i)*(n+1-j), i.e., the diagonal is not double-counted.
This is equal to n^2 + 2*Sum_{i=2..n, j is a totative of i} (n+1-i)*(n+1-j). Since Sum_{j is a totative of i} 1 = phi(i) and for i > 1, Sum_{j is a totative of i} j = i*phi(i)/2, the conclusion follows.
Similar argument holds for corresponding formulas for A088658, A114043, A114146, A115005, etc.
(End)
LINKS
M. Griffiths, Counting the regions in a regular drawing of K_{n,n}, J. Int. Seq. 13 (2010) # 10.8.5.
R. J. Mathar, Graphical representation among sequences closely related to this one (cf. N. J. A. Sloane, "Families of Essentially Identical Sequences").
N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021. (Includes this sequence)
N. J. A. Sloane (in collaboration with Scott R. Shannon), Art and Sequences, Slides of guest lecture in Math 640, Rutgers Univ., Feb 8, 2020. Mentions this sequence.
FORMULA
a(n) = Sum_{i=1..n, j=1..n, gcd(i,j)=1} (n+1-i)*(n+1-j).
As n -> oo, a(n) ~ (3/2)*n^4/Pi^2. This follows from Max Alekseyev's formula in A114043. - N. J. A. Sloane, Jul 03 2020
a(n) = n^2 + Sum_{i=2..n} (n+1-i)*(2n+2-i)*phi(i). - Chai Wah Wu, Aug 15 2021
MAPLE
A115004 := proc(n)
local a, b, r ;
r := 0 ;
for a from 1 to n do
for b from 1 to n do
if igcd(a, b) = 1 then
r := r+(n+1-a)*(n+1-b);
end if;
end do:
end do:
r ;
end proc:
seq(A115004(n), n=1..30); # R. J. Mathar, Jul 20 2017
MATHEMATICA
a[n_] := Sum[(n-i+1) (n-j+1) Boole[GCD[i, j] == 1], {i, n}, {j, n}];
Array[a, 40] (* Jean-François Alcover, Mar 23 2020 *)
PROG
(Python)
from math import gcd
def a115004(n):
r=0
for a in range(1, n + 1):
for b in range(1, n + 1):
if gcd(a, b)==1:
r+=(n + 1 - a)*(n + 1 - b)
return r
print([a115004(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 21 2017
(Python)
from sympy import totient
def A115004(n): return n**2 + sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(2, n+1)) # Chai Wah Wu, Aug 15 2021
(PARI) a(n) = n^2 + sum(i=2, n, (n+1-i)*(2*n+2-i)*eulerphi(i)); \\ Michel Marcus, May 08 2024
CROSSREFS
The following eight sequences are all essentially the same. The simplest is the present sequence, A115004(n), which we denote by z(n). Then A088658(n) = 4*z(n-1); A114043(n) = 2*z(n-1)+2*n^2-2*n+1; A114146(n) = 2*A114043(n); A115005(n) = z(n-1)+n*(n-1); A141255(n) = 2*z(n-1)+2*n*(n-1); A290131(n) = z(n-1)+(n-1)^2; A306302(n) = z(n)+n^2+2*n. - N. J. A. Sloane, Feb 04 2020
Main diagonal of array in A114999.
KEYWORD
nonn,nice
AUTHOR
N. J. A. Sloane, Feb 23 2006
STATUS
approved
Number of regions into which a figure made up of a row of n adjacent congruent rectangles is divided upon drawing diagonals of all possible rectangles (a(0)=0 by convention).
+10
51
0, 4, 16, 46, 104, 214, 380, 648, 1028, 1562, 2256, 3208, 4384, 5924, 7792, 10052, 12744, 16060, 19880, 24486, 29748, 35798, 42648, 50648, 59544, 69700, 80992, 93654, 107596, 123374, 140488, 159704, 180696, 203684, 228624, 255892, 285152, 317400, 352096, 389576
OFFSET
0,2
COMMENTS
Assuming that the rectangles have vertices at (k,0) and (k,1), k=0..n, the projective map (x,y) -> ((1-y)/(x+1),y/(x+1)) maps their partition to the partition of the right isosceles triangle described by Alekseyev et al. (2015), for which Theorem 13 gives the number of regions, line segments, and intersection points. - Max Alekseyev, Apr 10 2019
The figure is made up of A324042 triangles and A324043 quadrilaterals. - N. J. A. Sloane, Mar 03 2020
LINKS
Max Alekseyev, Illustration for n = 3.
M. A. Alekseyev. On the number of two-dimensional threshold functions, arXiv:math/0602511 [math.CO], 2006-2010; doi:10.1137/090750184, SIAM J. Disc. Math. 24(4), 2010, pp. 1617-1631.
M. A. Alekseyev, M. Basova, and N. Yu. Zolotykh. On the minimal teaching sets of two-dimensional threshold functions, SIAM Journal on Discrete Mathematics 29:1 (2015), 157-165. doi:10.1137/140978090.
Lars Blomberg, Scott R. Shannon and N. J. A. Sloane, Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids, (2020). Also arXiv:2009.07918.
M. Griffiths, Counting the regions in a regular drawing of K_{n,n}, J. Int. Seq. 13 (2010) # 10.8.5, Lemma 2.
Robert Israel, Maple program, Feb 07 2019
N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
FORMULA
a(n) = n + (A114043(n+1) - 1)/2, conjectured by N. J. A. Sloane, Feb 07 2019; proved by Max Alekseyev, Apr 10 2019
a(n) = n + A115005(n+1) = n + A141255(n+1)/2. - Max Alekseyev, Apr 10 2019
a(n) = A324042(n) + A324043(n). - Jinyuan Wang, Mar 19 2020
a(n) = Sum_{i=1..n, j=1..n, gcd(i,j)=1} (n+1-i)*(n+1-j) + n^2 + 2*n. - N. J. A. Sloane, Apr 11 2020
a(n) = 2n(n+1) + Sum_{i=2..n} (n+1-i)*(2n+2-i)*phi(i). - Chai Wah Wu, Aug 16 2021
MAPLE
# Maple from N. J. A. Sloane, Mar 04 2020, starting at n=1: First define z(n) = A115004
z := proc(n)
local a, b, r ;
r := 0 ;
for a from 1 to n do
for b from 1 to n do
if igcd(a, b) = 1 then
r := r+(n+1-a)*(n+1-b);
end if;
end do:
end do:
r ;
end proc:
a := n-> z(n)+n^2+2*n;
[seq(a(n), n=1..50)];
MATHEMATICA
z[n_] := Sum[(n - i + 1)(n - j + 1) Boole[GCD[i, j] == 1], {i, n}, {j, n}];
a[0] = 0;
a[n_] := z[n] + n^2 + 2n;
a /@ Range[0, 40] (* Jean-François Alcover, Mar 24 2020 *)
PROG
(Python)
from sympy import totient
def A306302(n): return 2*n*(n+1) + sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(2, n+1)) # Chai Wah Wu, Aug 16 2021
CROSSREFS
See A331755 for the number of vertices, A331757 for the number of edges.
A column of A288187. See A288177 for additional references.
Also a column of A331452 and A356790.
The following eight sequences are all essentially the same. The simplest is A115004(n), which we denote by z(n). Then A088658(n) = 4*z(n-1); A114043(n) = 2*z(n-1)+2*n^2-2*n+1; A114146(n) = 2*A114043(n); A115005(n) = z(n-1)+n*(n-1); A141255(n) = 2*z(n-1)+2*n*(n-1); A290131(n) = z(n-1)+(n-1)^2; A306302(n) = z(n)+n^2+2*n. - N. J. A. Sloane, Feb 04 2020
KEYWORD
nonn
AUTHOR
Paarth Jain, Feb 05 2019
EXTENSIONS
a(6)-a(20) from Robert Israel, Feb 07 2019
Edited and more terms added by Max Alekseyev, Apr 10 2019
a(0) added by N. J. A. Sloane, Feb 04 2020
STATUS
approved
Number of regions in a regular drawing of the complete bipartite graph K_{n,n}.
+10
29
0, 2, 12, 40, 96, 204, 368, 634, 1012, 1544, 2236, 3186, 4360, 5898, 7764, 10022, 12712, 16026, 19844, 24448, 29708, 35756, 42604, 50602, 59496, 69650, 80940, 93600, 107540, 123316, 140428, 159642, 180632, 203618, 228556, 255822, 285080, 317326, 352020, 389498
OFFSET
1,2
LINKS
Martin Griffiths, Counting the regions in a regular drawing of K_{n,n}, J. Int. Seq. 13 (2010) # 10.8.5. See Lemma 2 and Table 1.
Stéphane Legendre, The Number of Crossings in a Regular Drawing of the Complete Bipartite Graph, J. Integer Seqs., Vol. 12, 2009.
N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
Eric Weisstein's World of Mathematics, Complete Bipartite Graph
FORMULA
a(n) = A115004(n-1) + (n-1)^2.
a(n) = 2*(n-1)^2 + Sum_{i=2..n-1} (n-i)*(2n-i)*phi(i). - Chai Wah Wu, Aug 16 2021
MAPLE
A290131 := proc(n)
A115004(n-1)+(n-1)^2 ;
end proc:
seq(A290131(n), n=1..30) ;
MATHEMATICA
z[n_] := Sum[(n - i + 1)(n - j + 1) Boole[GCD[i, j] == 1], {i, n}, {j, n}];
a[n_] := z[n - 1] + (n - 1)^2;
Array[a, 40] (* Jean-François Alcover, Mar 24 2020 *)
PROG
(Python)
from math import gcd
def a115004(n):
r=0
for a in range(1, n + 1):
for b in range(1, n + 1):
if gcd(a, b)==1:r+=(n + 1 - a)*(n + 1 - b)
return r
def a(n): return a115004(n - 1) + (n - 1)**2
print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 20 2017, after Maple code
(Python)
from sympy import totient
def A290131(n): return 2*(n-1)**2 + sum(totient(i)*(n-i)*(2*n-i) for i in range(2, n)) # Chai Wah Wu, Aug 16 2021
CROSSREFS
For K_n see A007569, A007678, A135563.
The following eight sequences are all essentially the same. The simplest is A115004(n), which we denote by z(n). Then A088658(n) = 4*z(n-1); A114043(n) = 2*z(n-1)+2*n^2-2*n+1; A114146(n) = 2*A114043(n); A115005(n) = z(n-1)+n*(n-1); A141255(n) = 2*z(n-1)+2*n*(n-1); A290131(n) = z(n-1)+(n-1)^2; A306302(n) = z(n)+n^2+2*n. - N. J. A. Sloane, Feb 04 2020
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Jul 20 2017
STATUS
approved
Take an n X n square grid of points in the plane; a(n) = number of ways to divide the points into two sets using a straight line.
+10
23
1, 7, 29, 87, 201, 419, 749, 1283, 2041, 3107, 4493, 6395, 8745, 11823, 15557, 20075, 25457, 32087, 39725, 48935, 59457, 71555, 85253, 101251, 119041, 139351, 161933, 187255, 215137, 246691, 280917, 319347, 361329, 407303
OFFSET
1,2
COMMENTS
Also, half of the number of two-dimensional threshold functions (A114146).
The line may not pass through any point. This is the "labeled" version - rotations and reflections are not taken into account (cf. A116696).
The number of ways to divide a (2n) X (2n) grid into two sets of equal size is given by 2*A099957(n). - David Applegate, Feb 23 2006
All terms are odd: the line that misses the grid contributes 1 to the total and all other lines contribute 2, 4 or 8, so the total must be odd.
What can be said about the 3-D generalization? - Max Alekseyev, Feb 27 2006
LINKS
Max A. Alekseyev. On the number of two-dimensional threshold functions, arXiv:math/0602511 [math.CO], 2006-2010; doi:10.1137/090750184, SIAM J. Disc. Math. 24(4), 2010, pp. 1617-1631.
M. A. Alekseyev, M. Basova, and N. Yu. Zolotykh. On the minimal teaching sets of two-dimensional threshold functions. SIAM Journal on Discrete Mathematics 29:1 (2015), 157-165. doi:10.1137/140978090. See Eq. (11).
N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
FORMULA
Let V(m,n) = Sum_{i=1..m, j=1..n, gcd(i,j)=1} (m+1-i)*(n+1-j); then a(n+1) = 2*(n^2 + n + V(n,n)) + 1. - Max Alekseyev, Feb 22 2006
a(n) ~ (3/Pi^2) * n^4. - Max Alekseyev, Feb 22 2006
a(n) = A141255(n) + 1. - T. D. Noe, Jun 17 2008
a(n) = 4*n^2 - 6*n + 3 + 2*Sum_{i=2..n-1} (n-i)*(2n-i)*phi(i). - Chai Wah Wu, Aug 15 2021
EXAMPLE
Examples: the two sets are indicated by X's and o's.
a(2) = 7:
XX oX Xo XX XX oo oX
XX XX XX Xo oX XX oX
--------------------
a(3) = 29:
XXX oXX ooX ooo ooX ooo
XXX XXX XXX XXX oXX oXX
XXX XXX XXX XXX XXX XXX
-1- -4- -8- -4- -4- -8- Total = 29
--------------------
a(4)= 87:
XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX XXXX XXXo XXXo XXXo XXoo XXoo
XXXX XXXo XXoo Xooo oooo XXoo Xooo oooo Xooo oooo
--1- --4- --8- --8- --4- --4- --8- --8- --8- --8-
XXXX XXXX XXXX XXXX XXXX
XXXo XXXX XXXX XXXo XXXo
XXoo Xooo oooo Xooo XXoo
Xooo oooo oooo oooo oooo
--4- --8- --2- --4- --8- Total = 87.
--------------------
MATHEMATICA
a[n_] := 2*Sum[(n - i)*(n - j)*Boole[CoprimeQ[i, j]], {i, 1, n - 1}, {j, 1, n - 1}] + 2*n^2 - 2*n + 1; Array[a, 40] (* Jean-François Alcover, Apr 25 2016, after Max Alekseyev *)
PROG
(Python)
from sympy import totient
def A114043(n): return 4*n**2-6*n+3 + 2*sum(totient(i)*(n-i)*(2*n-i) for i in range(2, n)) # Chai Wah Wu, Aug 15 2021
CROSSREFS
Cf. A114499, A115004, A115005, A116696 (unlabeled case), A114531, A114146.
Cf. A099957.
The following eight sequences are all essentially the same. The simplest is A115004(n), which we denote by z(n). Then A088658(n) = 4*z(n-1); A114043(n) = 2*z(n-1)+2*n^2-2*n+1; A114146(n) = 2*A114043(n); A115005(n) = z(n-1)+n*(n-1); A141255(n) = 2*z(n-1)+2*n*(n-1); A290131(n) = z(n-1)+(n-1)^2; A306302(n) = z(n)+n^2+2*n. - N. J. A. Sloane, Feb 04 2020
KEYWORD
nonn,nice
AUTHOR
Ugo Merlone (merlone(AT)econ.unito.it) and N. J. A. Sloane, Feb 22 2006
EXTENSIONS
More terms from Max Alekseyev, Feb 22 2006
STATUS
approved
Total number of line segments between points visible to each other in a square n X n lattice.
+10
23
0, 6, 28, 86, 200, 418, 748, 1282, 2040, 3106, 4492, 6394, 8744, 11822, 15556, 20074, 25456, 32086, 39724, 48934, 59456, 71554, 85252, 101250, 119040, 139350, 161932, 187254, 215136, 246690, 280916, 319346, 361328, 407302, 457180, 511714, 570232
OFFSET
1,2
COMMENTS
A line segment joins points (a,b) and (c,d) if the points are distinct and gcd(c-a,d-b)=1.
REFERENCES
D. M. Acketa, J. D. Zunic: On the number of linear partitions of the (m,n)-grid. Inform. Process. Lett., 38 (3) (1991), 163-168. See Table A.1.
Jovisa Zunic, Note on the number of two-dimensional threshold functions, SIAM J. Discrete Math. Vol. 25 (2011), No. 3, pp. 1266-1268. See Eq. (1.2).
FORMULA
a(n) = A114043(n) - 1.
a(n) = 2*(n-1)*(2n-1) + 2*Sum_{i=2..n-1} (n-i)*(2n-i)*phi(i). - Chai Wah Wu, Aug 16 2021
EXAMPLE
The 2 x 2 square lattice has a total of 6 line segments: 2 vertical, 2 horizontal and 2 diagonal.
MATHEMATICA
Table[cnt=0; Do[If[GCD[c-a, d-b]<2, cnt++ ], {a, n}, {b, n}, {c, n}, {d, n}]; (cnt-n^2)/2, {n, 20}]
(* This recursive code is much more efficient. *)
a[n_]:=a[n]=If[n<=1, 0, 2*a1[n]-a[n-1]+R1[n]]
a1[n_]:=a1[n]=If[n<=1, 0, 2*a[n-1]-a1[n-1]+R2[n]]
R1[n_]:=R1[n]=If[n<=1, 0, R1[n-1]+4*EulerPhi[n-1]]
R2[n_]:=(n-1)*EulerPhi[n-1]
Table[a[n], {n, 1, 37}]
(* Seppo Mustonen, May 13 2010 *)
a[n_]:=2 Sum[(n-i) (n-j) Boole[CoprimeQ[i, j]], {i, 1, n-1}, {j, 1, n-1}] + 2 n^2 - 2 n; Array[a, 40] (* Vincenzo Librandi, Feb 05 2020 *)
PROG
(Python)
from sympy import totient
def A141255(n): return 2*(n-1)*(2*n-1) + 2*sum(totient(i)*(n-i)*(2*n-i) for i in range(2, n)) # Chai Wah Wu, Aug 16 2021
CROSSREFS
Cf. A141224.
The following eight sequences are all essentially the same. The simplest is A115004(n), which we denote by z(n). Then A088658(n) = 4*z(n-1); A114043(n) = 2*z(n-1)+2*n^2-2*n+1; A114146(n) = 2*A114043(n); A115005(n) = z(n-1)+n*(n-1); A141255(n) = 2*z(n-1)+2*n*(n-1); A290131(n) = z(n-1)+(n-1)^2; A306302(n) = z(n)+n^2+2*n. - N. J. A. Sloane, Feb 04 2020
KEYWORD
nonn
AUTHOR
T. D. Noe, Jun 17 2008
STATUS
approved
Number of triangles in an n X n unit grid that have minimal possible area (of 1/2).
+10
12
0, 4, 32, 124, 320, 716, 1328, 2340, 3792, 5852, 8544, 12260, 16864, 22916, 30272, 39188, 49824, 62948, 78080, 96348, 117232, 141260, 168480, 200292, 235680, 276100, 321056, 371484, 427024, 489900, 558112, 634724, 718432, 810116, 909600, 1018388, 1135136, 1263828, 1402304, 1551908
OFFSET
1,2
LINKS
N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
FORMULA
a(n+1) = 4*A115004(n).
a(n) = 4*(n-1)^2 + 4*Sum_{i=2..n-1} (n-i)*(2n-i)*phi(i). - Chai Wah Wu, Aug 15 2021
EXAMPLE
a(2)=4 because 4 (isosceles right) triangles with area 1/2 can be placed on a 2 X 2 grid.
MATHEMATICA
z[n_] := Sum[(n - i + 1)(n - j + 1) Boole[GCD[i, j] == 1], {i, n}, {j, n}];
a[n_] := 4 z[n - 1];
Array[a, 40] (* Jean-François Alcover, Mar 24 2020 *)
PROG
(Python)
from sympy import totient
def A088658(n): return 4*(n-1)**2 + 4*sum(totient(i)*(n-i)*(2*n-i) for i in range(2, n)) # Chai Wah Wu, Aug 15 2021
CROSSREFS
Cf. A045996.
The following eight sequences are all essentially the same. The simplest is A115004(n), which we denote by z(n). Then A088658(n) = 4*z(n-1); A114043(n) = 2*z(n-1)+2*n^2-2*n+1; A114146(n) = 2*A114043(n); A115005(n) = z(n-1)+n*(n-1); A141255(n) = 2*z(n-1)+2*n*(n-1); A290131(n) = z(n-1)+(n-1)^2; A306302(n) = z(n)+n^2+2*n. - N. J. A. Sloane, Feb 04 2020
KEYWORD
nonn
AUTHOR
Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 21 2003
EXTENSIONS
a(7)-a(28) from Ray Chandler, May 03 2011
Corrected and extended by Ray Chandler, May 18 2011
STATUS
approved
Number of threshold functions on n X n grid.
+10
12
1, 2, 14, 58, 174, 402, 838, 1498, 2566, 4082, 6214, 8986, 12790, 17490, 23646, 31114, 40150, 50914, 64174, 79450, 97870, 118914, 143110, 170506, 202502, 238082, 278702, 323866, 374510, 430274, 493382, 561834, 638694, 722658, 814606, 914362, 1023430, 1140466
OFFSET
0,2
COMMENTS
Also, number of intersections of a halfspace with an n X n grid. While A114043 counts cuts, this sequence counts sides of cuts. The only difference between this and twice A114043 is that this makes sense for the empty grid. This is the "labeled" version - rotations and reflections are not taken into account. - David Applegate, Feb 24 2006
In the terminology of Koplowitz et al., this is the number of linear dichotomies on a square grid. - N. J. A. Sloane, Mar 14 2020
LINKS
M. A. Alekseyev. On the number of two-dimensional threshold functions, arXiv:math/0602511 [math.CO], 2006-2010; doi:10.1137/090750184, SIAM J. Disc. Math. 24(4), 2010, pp. 1617-1631.
M. A. Alekseyev, M. Basova, N. Yu. Zolotykh. On the minimal teaching sets of two-dimensional threshold functions. SIAM J. Disc. Math. 29(1), 2015, pp. 157-165.
Jack Koplowitz, Michael Lindenbaum and A. Bruckstein, The number of digital straight lines on an N*N grid, IEEE Transactions on Information Theory 36.1 (1990): 192-197. See D(n).
N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
FORMULA
For n>0, a(n) = 2*A114043(n).
For n>0, a(n) = 8*n^2 - 12*n + 6 + 4*Sum_{i=2..n-1} (n-i)*(2n-i)*phi(i). - Chai Wah Wu, Aug 15 2021
MATHEMATICA
a[0] = 1; a[n_] := 4 Sum[(n-i)(n-j) Boole[CoprimeQ[i, j]], {i, 1, n-1}, {j, 1, n-1}] + 4 n^2 - 4 n + 2;
Array[a, 38, 0] (* Jean-François Alcover, Sep 04 2018, after Max Alekseyev in A114043 *)
PROG
(Python)
from sympy import totient
def A114146(n): return 1 if n == 0 else 8*n**2-12*n+6 + 4*sum(totient(i)*(n-i)*(2*n-i) for i in range(2, n)) # Chai Wah Wu, Aug 15 2021
CROSSREFS
The following eight sequences are all essentially the same. The simplest is A115004(n), which we denote by z(n). Then A088658(n) = 4*z(n-1); A114043(n) = 2*z(n-1)+2*n^2-2*n+1; A114146(n) = 2*A114043(n); A115005(n) = z(n-1)+n*(n-1); A141255(n) = 2*z(n-1)+2*n*(n-1); A290131(n) = z(n-1)+(n-1)^2; A306302(n) = z(n)+n^2+2*n. - N. J. A. Sloane, Feb 04 2020
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 22 2006
EXTENSIONS
Definition corrected by Max Alekseyev, Oct 23 2008
a(0)=1 prepended by Max Alekseyev, Jan 23 2015
STATUS
approved
Array read by antidiagonals: T(m,n) = Sum_{i=1..m, j=1..n, gcd(i,j)=1} (m+1-i)*(n+1-j), m>=1, n>=1.
+10
11
1, 3, 3, 6, 8, 6, 10, 16, 16, 10, 15, 26, 31, 26, 15, 21, 39, 50, 50, 39, 21, 28, 54, 75, 80, 75, 54, 28, 36, 72, 103, 120, 120, 103, 72, 36, 45, 92, 137, 164, 179, 164, 137, 92, 45, 55, 115, 175, 218, 244, 244, 218, 175, 115, 55, 66, 140, 218, 278, 324, 332, 324, 278, 218, 140
OFFSET
1,2
COMMENTS
The corresponding triangle is A320541, counting (1/4) * number of ways to select 3 distinct points forming a triangle of unsigned area = 1/2 from a rectangle of grid points with side lengths j and k, written as triangle T(j,k), j<=k. - Hugo Pfoertner, Oct 22 2018
LINKS
Max A. Alekseyev. On the number of two-dimensional threshold functions. SIAM J. Disc. Math. 24(4), 2010, pp. 1617-1631. doi:10.1137/090750184
EXAMPLE
The top left corner of the array is:
[1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78]
[3, 8, 16, 26, 39, 54, 72, 92, 115, 140, 168, 198]
[6, 16, 31, 50, 75, 103, 137, 175, 218, 265, 318, 374]
[10, 26, 50, 80, 120, 164, 218, 278, 346, 420, 504, 592]
[15, 39, 75, 120, 179, 244, 324, 413, 514, 623, 747, 877]
[21, 54, 103, 164, 244, 332, 441, 562, 699, 846, 1014, 1190]
[28, 72, 137, 218, 324, 441, 585, 745, 926, 1120, 1342, 1575]
[36, 92, 175, 278, 413, 562, 745, 948, 1178, 1424, 1706, 2002]
[45, 115, 218, 346, 514, 699, 926, 1178, 1463, 1768, 2118, 2485]
[55, 140, 265, 420, 623, 846, 1120, 1424, 1768, 2136, 2559, 3002]
[66, 168, 318, 504, 747, 1014, 1342, 1706, 2118, 2559, 3065, 3595]
[78, 198, 374, 592, 877, 1190, 1575, 2002, 2485, 3002, 3595, 4216]
...
MAPLE
T:=proc(m, n) local t1, i, j; t1:=0; for i from 1 to m do for j from 1 to n do if gcd(i, j)=1 then t1:=t1+(m+1-i)*(n+1-j); fi; od; od; t1; end;
MATHEMATICA
T[m_, n_] := Module[{t1, i, j}, t1 = 0; For[i = 1, i <= m, i++, For[j = 1, j <= n, j++, If[GCD[i, j] == 1 , t1 = t1 + (m+1-i)*(n+1-j)]]]; t1]; Table[T[m-n+1, n], {m, 1, 11}, {n, 1, m}] // Flatten (* Jean-François Alcover, Jan 07 2014, translated from Maple *)
CROSSREFS
Cf. A114043, A115004 (main diagonal), A115005, A115006, A115007, A320541.
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Feb 23 2006
STATUS
approved
Number of quadrilateral regions into which a figure made up of a row of n adjacent congruent rectangles is divided upon drawing diagonals of all possible rectangles.
+10
11
0, 2, 14, 34, 90, 154, 288, 462, 742, 1038, 1512, 2074, 2904, 3774, 4892, 6154, 7864, 9662, 12022, 14638, 17786, 20998, 25024, 29402, 34672, 40038, 46310, 53038, 61090, 69454, 79344, 89890, 101792, 113854, 127476, 141866, 158428, 175182, 193760, 213274, 235444, 258182, 283858, 310750, 339986
OFFSET
1,2
COMMENTS
A row of n adjacent congruent rectangles can only be divided into triangles (cf. A324042) or quadrilaterals when drawing diagonals. Proof is given in Alekseyev et al. (2015) under the transformation described in A306302.
LINKS
M. A. Alekseyev, M. Basova, and N. Yu. Zolotykh, On the minimal teaching sets of two-dimensional threshold functions. SIAM Journal on Discrete Mathematics 29:1 (2015), 157-165.
Lars Blomberg, Scott R. Shannon, and N. J. A. Sloane, Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids, (2021). Also arXiv:2009.07918.
Robert Israel, Maple program.
FORMULA
a(n) = A115005(n+1) - A177719(n+1) - n - 1 = Sum_{i,j=1..n; gcd(i,j)=1} (n+1-i)*(n+1-j) - 2*Sum_{i,j=1..n; gcd(i,j)=2} (n+1-i)*(n+1-j) - n^2. - Max Alekseyev, Jul 08 2019
a(n) = A306302(n) - A324042(n).
For n>1, a(n) = -2(n-1)^2 + Sum_{i=2..floor(n/2)} (n+1-i)*(7i-2n-2)*phi(i) + Sum_{i=floor(n/2)+1..n} (n+1-i)*(2n+2-i)*phi(i). - Chai Wah Wu, Aug 16 2021
EXAMPLE
For k adjacent congruent rectangles, the number of quadrilateral regions in the j-th rectangle is:
k\j| 1 2 3 4 5 6 7 ...
---+--------------------------------
1 | 0, 0, 0, 0, 0, 0, 0, ...
2 | 1, 1, 0, 0, 0, 0, 0, ...
3 | 3, 8, 3, 0, 0, 0, 0, ...
4 | 5, 12, 12, 5, 0, 0, 0, ...
5 | 7, 22, 32, 22, 7, 0, 0, ...
6 | 9, 28, 40, 40, 28, 9, 0, ...
7 | 11, 38, 58, 74, 58, 38, 11, ...
...
a(4) = 5 + 12 + 12 + 5 = 34.
MAPLE
See Robert Israel link.
There are also Maple programs for both A306302 and A324042. Then a := n -> A306302(n) - A324042(n); # N. J. A. Sloane, Mar 04 2020
MATHEMATICA
Table[Sum[Sum[(Boole[GCD[i, j] == 1] - 2 * Boole[GCD[i, j] == 2]) * (n + 1 - i) * (n + 1 - j), {j, 1, n}], {i, 1, n}] - n^2, {n, 1, 45}] (* Joshua Oliver, Feb 05 2020 *)
PROG
(PARI) { A324043(n) = sum(i=1, n, sum(j=1, n, ( (gcd(i, j)==1) - 2*(gcd(i, j)==2) ) * (n+1-i) * (n+1-j) )) - n^2; } \\ Max Alekseyev, Jul 08 2019
(Python)
from sympy import totient
def A324043(n): return 0 if n==1 else -2*(n-1)**2 + sum(totient(i)*(n+1-i)*(7*i-2*n-2) for i in range(2, n//2+1)) + sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(n//2+1, n+1)) # Chai Wah Wu, Aug 16 2021
KEYWORD
nonn
AUTHOR
Jinyuan Wang, May 01 2019
EXTENSIONS
a(8)-a(23) from Robert Israel, Jul 07 2019
Terms a(24) onward from Max Alekseyev, Jul 08 2019
STATUS
approved
Array read by antidiagonals: let V(m,n) = Sum_{i=1..m, j=1..n, gcd(i,j)=1} (m+1-i)*(n+1-j), then T(m,n) = 2*m*n+m+n+2*V(m,n), for m >= 0, n >= 0.
+10
4
0, 1, 1, 2, 6, 2, 3, 13, 13, 3, 4, 22, 28, 22, 4, 5, 33, 49, 49, 33, 5, 6, 46, 74, 86, 74, 46, 6, 7, 61, 105, 131, 131, 105, 61, 7, 8, 78, 140, 188, 200, 188, 140, 78, 8, 9, 97, 181, 251, 289, 289, 251, 181, 97, 9, 10, 118, 226, 326, 386, 418, 386, 326, 226, 118, 10, 11, 141, 277
OFFSET
0,4
COMMENTS
This is the number of linear partitions of an m X n grid.
REFERENCES
D. M. Acketa, J. D. Zunic: On the number of linear partitions of the (m,n)-grid. Inform. Process. Lett., 38 (3) (1991), 163-168. See Table A.1.
Jovisa Zunic, Note on the number of two-dimensional threshold functions, SIAM J. Discrete Math. Vol. 25 (2011), No. 3, pp. 1266-1268. See Equation (1.2).
LINKS
Max A. Alekseyev. On the number of two-dimensional threshold functions. SIAM J. Disc. Math. 24(4), 2010, pp. 1617-1631. doi:10.1137/090750184
EXAMPLE
The array begins:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...
1, 6, 13, 22, 33, 46, 61, 78, 97, 118, ...
2, 13, 28, 49, 74, 105, 140, 181, 226, 277, ...
3, 22, 49, 86, 131, 188, 251, 326, 409, 502, ...
4, 33, 74, 131, 200, 289, 386, 503, 632, 777, ...
5, 46, 105, 188, 289, 418, 559, 730, 919, 1132, ...
6, 61, 140, 251, 386, 559, 748, 979, 1234, 1521, ...
7, 78, 181, 326, 503, 730, 979, 1282, 1617, 1994, ...
...
MAPLE
V:=proc(m, n) local t1, i, j; t1:=0; for i from 1 to m do for j from 1 to n do if gcd(i, j)=1 then t1:=t1+(m+1-i)*(n+1-j); fi; od; od; t1; end; T:=(m, n)->(2*m*n+m+n+2*V(m, n));
MATHEMATICA
V[m_, n_] := Sum[If[GCD[i, j] == 1, (m-i+1)*(n-j+1), 0], {i, 1, m}, {j, 1, n}]; T[m_, n_] := 2*m*n+m+n+2*V[m, n]; Table[T[m-n, n], {m, 0, 11}, {n, 0, m}] // Flatten (* Jean-François Alcover, Jan 08 2014 *)
CROSSREFS
The second and third rows are A028872 and A358296.
The main diagonal is A141255 = A114043 - 1.
The lower triangle is A332351.
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Feb 24 2006
STATUS
approved

Search completed in 0.016 seconds