[go: up one dir, main page]

login
Search: a111568 -id:a111568
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = 2n^(n-1) - 1.
+10
6
1, 3, 17, 127, 1249, 15551, 235297, 4194303, 86093441, 1999999999, 51874849201, 1486016741375, 46596170244961, 1587429546508287, 58385852050781249, 2305843009213693951, 97322383751333736961, 4371823119477393063935
OFFSET
1,2
COMMENTS
a(n) = A111568(n,n-1), i.e., diagonal of A111568. A111568 is the triangle whose n-th row contains n terms of the arithmetic progression having first term 1 and common difference 2*(n^(n-1)-1)/(n-1). - Emeric Deutsch, Aug 08 2005
MAPLE
a:=n->2*n^(n-1)-1: seq(a(n), n=1..20); # Emeric Deutsch, Aug 08 2005
MATHEMATICA
f[n_] := 2*n^(n-1) - 1; Table[f[i], {i, 1, 30}] (* Ryan Propper, Aug 08 2005 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Apr 05 2004
EXTENSIONS
More terms from Emeric Deutsch and Ryan Propper, Aug 08 2005
STATUS
approved
a(1)=1, a(n) = 2*(n^(n-1)-1)/(n-1) for n >= 2.
+10
3
1, 2, 8, 42, 312, 3110, 39216, 599186, 10761680, 222222222, 5187484920, 135092431034, 3883014187080, 122109965116022, 4170418003627232, 153722867280912930, 6082648984458358560, 257166065851611356702
OFFSET
1,2
COMMENTS
Proposition: n^(n-1) - 1 == 0 (mod (n-1)^2). Hence a(n) == 0 mod (n-1).
a(n) is the common difference of the arithmetic progression in row n of A111568. Written in base n, a(n) has n-1 digits equal to 2 (for example, a(10)=222222222). - Emeric Deutsch, Aug 08 2005
FORMULA
a(1) = 1, a(n) = 2*(n^(n-1) - 1)/(n-1) for n > 1.
MAPLE
a:=proc(n) if n=1 then 1 else 2*(n^(n-1)-1)/(n-1) fi end: seq(a(n), n=1..20); # Emeric Deutsch, Aug 08 2005
MATHEMATICA
f[n_] := (2*n^(n-1) - 2)/(n-1); Table[f[i], {i, 2, 30}] (* Ryan Propper, Aug 08 2005 *)
CROSSREFS
Cf. A111568.
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Apr 05 2004
EXTENSIONS
More terms from Emeric Deutsch and Ryan Propper, Aug 08 2005
STATUS
approved

Search completed in 0.008 seconds