[go: up one dir, main page]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a108524 -id:a108524
Displaying 1-6 of 6 results found. page 1
     Sort: relevance | references | number | modified | created      Format: long | short | data
A357585 Triangle read by rows. Inverse of the convolution triangle of A108524, the number of ordered rooted trees with n generators. +20
2
1, 0, 1, 0, 2, 1, 0, 7, 4, 1, 0, 32, 18, 6, 1, 0, 166, 92, 33, 8, 1, 0, 926, 509, 188, 52, 10, 1, 0, 5419, 2964, 1113, 328, 75, 12, 1, 0, 32816, 17890, 6792, 2078, 520, 102, 14, 1, 0, 203902, 110896, 42436, 13312, 3520, 772, 133, 16, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
Also the matrix inverse of the signed version of A105475 with 1, 0, 0, 0, ... as column 0.
LINKS
EXAMPLE
Triangle T(n, k) starts:
[0] 1;
[1] 0, 1;
[2] 0, 2, 1;
[3] 0, 7, 4, 1;
[4] 0, 32, 18, 6, 1;
[5] 0, 166, 92, 33, 8, 1;
[6] 0, 926, 509, 188, 52, 10, 1;
[7] 0, 5419, 2964, 1113, 328, 75, 12, 1;
[8] 0, 32816, 17890, 6792, 2078, 520, 102, 14, 1;
[9] 0, 203902, 110896, 42436, 13312, 3520, 772, 133, 16, 1;
MAPLE
InvPMatrix := proc(dim, seqfun) local k, m, M, A;
if dim < 1 then return [] fi;
A := [seq(seqfun(i), i = 1..dim-1)];
M := Matrix(dim, shape=triangular[lower]); M[1, 1] := 1;
for m from 2 to dim do
M[m, m] := M[m - 1, m - 1] / A[1];
for k from m-1 by -1 to 2 do
M[m, k] := M[m - 1, k - 1] -
add(A[i+1] * M[m, k + i], i = 1..m-k) / A[1]
od od; M end:
InvPMatrix(10, n -> [1, -2][irem(n-1, 2) + 1]);
CROSSREFS
Cf. A108524 (column 1), A047891 (row sums), A105475.
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Oct 08 2022
STATUS
approved
A108529 Number of asymmetric mobiles (cycle rooted trees) with n generators. +10
10
1, 1, 2, 5, 16, 51, 177, 621, 2246, 8245, 30783, 116257, 443945, 1710255, 6640939, 25961690, 102105115, 403701135, 1603721999, 6397931901, 25621989760, 102965680728, 415091909292, 1678226164646, 6803121058354, 27645628327636 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
A generator is a leaf or a node with just one child.
Here CHK(A(x)) = 1 - Sum_{n>=1} (mu(n)/n)*log(1-A(x^n)), i.e., the constant 1 is included in the definition of the CHK transform. For other sequences that involve the CHK transform, the 1 is sometimes dropped; e.g., see sequence A032171. We have CHK(A(x)) = x + x^2 + 3*x^3 + 8*x^4 + 27*x^5 + 86*x^6 + 303*x^7 + 1065*x^8 + 3871*x^9 + ... - Petros Hadjicostas, Dec 05 2017
LINKS
C. G. Bower, Transforms (2)
FORMULA
G.f. satisfies: (2-x)*A(x) = x - 1 + CHK(A(x)).
From Petros Hadjicostas, Dec 05 2017: (Start)
a(n) = (1/2)*(a(n-1) + (1/n)*Sum_{d|n} mu(d)*c(n/d)) for n>=2, where c(n) = n*a(n) + Sum_{s=1..n-1} c(s)*a(n-s) and a(1) = c(1) = 1.
The g.f. satisfies (2-x)*A(x) = x - Sum_{n>=1} (mu(n)/n)*log(1-A(x^n)). (This is just a rephrasing of C. Bower's equation above.)
The auxiliary sequence (c(n): n>=1} has g.f. C(x) = Sum_{n>=1} c(n)*x^n = x*(dA/dx)/(1-A(x)) = x + 3*x^2 + 10*x^3 + 35*x^4 + 136*x^5 + 528*x^6 + 2122*x^7 + ...
(End)
PROG
(PARI)
CHK(p, n)={sum(d=1, n, moebius(d)/d*log(subst(1/(1+O(x*x^(n\d))-p), x, x^d)))}
seq(n)={my(p=x); for(n=2, n, p += x^n*polcoef(x*p + CHK(p, n), n)); Vecrev(p/x)} \\ Andrew Howroyd, Aug 31 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Christian G. Bower, Jun 07 2005
STATUS
approved
A347205 a(2n+1) = a(n) for n >= 0, a(2n) = a(n) + a(n - 2^A007814(n)) for n > 0 with a(0) = 1. +10
8
1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 6, 3, 4, 1, 5, 4, 7, 3, 9, 5, 7, 2, 10, 6, 9, 3, 10, 4, 5, 1, 6, 5, 9, 4, 12, 7, 10, 3, 14, 9, 14, 5, 16, 7, 9, 2, 15, 10, 16, 6, 19, 9, 12, 3, 20, 10, 14, 4, 15, 5, 6, 1, 7, 6, 11, 5, 15, 9, 13, 4, 18, 12, 19, 7, 22, 10, 13 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Scatter plot might be called "Cypress forest on a windy day". - Antti Karttunen, Nov 30 2021
LINKS
J. Abate and W. Whitt, Brownian Motion and the Generalized Catalan Numbers, J. Int. Seq. 14 (2011) # 11.2.6.
FORMULA
a(2n+1) = a(n) for n >= 0.
a(2n) = a(n) + a(n - 2^A007814(n)) = a(2*A059894(n)) for n > 0 with a(0) = 1.
Sum_{k=0..2^n - 1} a(k) = A000108(n+1) for n >= 0.
a((4^n - 1)/3) = A000108(n) for n >= 0.
a(2^m*(2^n - 1)) = binomial(n + m, n) for n >= 0, m >= 0.
Generalization:
b(2n+1, p, q) = b(n, p, q) for n >= 0.
b(2n, p, q) = p*b(n, p, q) + q*b(n - 2^A007814(n), p, q) = for n > 0 with b(0, p, q) = 1.
Sum_{k=0..2^n - 1} b(k, 2, 1) = A006318(n) for n >= 0.
Sum_{k=0..2^n - 1} b(k, 2, 2) = A115197(n) for n >= 0.
Sum_{k=0..2^n - 1} b(k, 3, 1) = A108524(n+1) for n >= 0.
Sum_{k=0..2^n - 1} b(k, 3, 3) = A116867(n) for n >= 0.
b((4^n - 1)/3, p, q) is generalized Catalan number C(p, q; n).
Conjecture: C(p, q; n) = Sum_{k=0..n-1} p^k*q^(n-k-1) Sum_{j=0..k} q^j*A009766(n-2, j) for n > 1 with C(p, q; 0) = C(p, q; 1) = 1.
MATHEMATICA
a[0] = 1; a[n_] := a[n] = If[OddQ[n], a[(n - 1)/2], a[n/2] + a[n/2 - 2^IntegerExponent[n/2, 2]]]; Array[a, 100, 0] (* Amiram Eldar, Sep 06 2021 *)
PROG
(PARI) a(n) = if (n==0, 1, if (n%2, a(n\2), a(n/2) + a(n/2 - 2^valuation(n/2, 2)))); \\ Michel Marcus, Sep 09 2021
CROSSREFS
Similar recurrences: A124758, A243499, A284005, A329369, A341392.
KEYWORD
nonn,look
AUTHOR
Mikhail Kurkov, Aug 23 2021 [verification needed]
STATUS
approved
A121575 Riordan array (-sqrt(4*x^2+8*x+1)+2*x+2, (sqrt(4*x^2+8*x+1)-2*x-1)/2). +10
3
1, -2, 1, 6, -5, 1, -24, 24, -8, 1, 114, -123, 51, -11, 1, -600, 672, -312, 87, -14, 1, 3372, -3858, 1914, -618, 132, -17, 1, -19824, 22992, -11904, 4218, -1068, 186, -20, 1, 120426, -140991, 75183, -28383, 8043, -1689, 249, -23, 1, -749976, 884112, -481704, 190347, -58398, 13929, -2508, 321, -26, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
First column is (-1)^n*A054872(n). Row sums are a signed version of A108524. Inverse of generalized Delannoy triangle A121574. Unsigned triangle is A121576.
Triangle T(n,k), 0 <= k <= n, read by rows, given by [ -2, -1, -3, -1, -3, -1, -3, -1, -3, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 09 2006
LINKS
FORMULA
T(n,k) = (-1)^(n-k)*(1/2)*Sum_{i=0..n-k} binomial(n,i) * binomial(2*n-k-i,n)*(4 - 9*i + 3*i^2 - 6*(i-1)*n + 2*n^2)/((n-i+2)*(n-i+1))*2^i. - G. C. Greubel, Nov 02 2018
EXAMPLE
Triangle begins
1;
-2, 1;
6, -5, 1;
-24, 24, -8, 1;
114, -123, 51, -11, 1;
-600, 672, -312, 87, -14, 1;
MATHEMATICA
Flatten[Table[(-1)^(n-k)*Sum[Binomial[n, i] Binomial[2*n-k-i, n]*(4-9*i + 3*i^2 -6*(i-1)*n + 2*n^2)/((n-i+2)*(n-i+1))*2^i, {i, 0, n-k}]/2, {n, 0, 10}, {k, 0, n}]] (* G. C. Greubel, Nov 02 2018 *)
PROG
(PARI) for(n=0, 10, for(k=0, n, print1((-1)^(n-k)*sum(j=0, n-k, 2^j*binomial(n, j) *binomial(2*n-k-j, n)*(4-9*j+3*j^2-6*(j-1)*n + 2*n^2)/((n-j+2)*(n-j+1)))/2, ", "))) \\ G. C. Greubel, Nov 02 2018
(Magma) [[(-1)^(n-k)*(&+[ 2^j*Binomial(n, j)*Binomial(2*n-k-j, n)*(4-9*j+3*j^2-6*(j-1)*n + 2*n^2)/((n-j+2)*(n-j+1))/2: j in [0..(n-k)]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Nov 02 2018
(GAP) T:=Flat(List([0..9], n->List([0..n], k->(-1)^(n-k)*Sum([0..n-k], i->Binomial(n, i)*Binomial(2*n-k-i, n)*(4-9*i+3*i^2-6*(i-1)*n+2*n^2)/((n-i+2)*(n-i+1))*2^i)/2))); # Muniru A Asiru, Nov 02 2018
KEYWORD
sign,tabl
AUTHOR
Paul Barry, Aug 08 2006
STATUS
approved
A108528 Number of increasing mobiles (cycle rooted trees) with n generators. +10
2
1, 2, 10, 92, 1216, 20792, 435520, 10793792, 308874016, 10021509632, 363509706880, 14576530558592, 640275236943616, 30573223563625472, 1576805482203235840, 87353392124392020992, 5173324070004374358016, 326160898887563325581312, 21810458629345555407462400 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
In an increasing rooted tree, nodes are numbered and numbers increase as you move away from root.
LINKS
FORMULA
E.g.f. satisfies 2*A(x) = x - 1 + A'(x) - log(1-A(x)).
From Paul D. Hanna, Sep 11 2010: (Start)
E.g.f. satisfies: (1+A(x))*sqrt(1-A(x)^2) = exp(x).
E.g.f.: A(x) = Series_Reversion[ log((1+x)*sqrt(1-x^2)) ]. (End)
a(n) ~ 2^(n-2) * sqrt(3) * n^(n-1) / (exp(n) * (log(27/16))^(n-1/2)). - Vaclav Kotesovec, Jan 08 2014
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[Log[(1+x)*Sqrt[1-x^2]], {x, 0, 20}], x], x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 08 2014 *)
PROG
(PARI) {a(n)=n!*polcoeff(serreverse(log((1+x)*sqrt(1-x^2+O(x^(n+2))))), n)} \\ Paul D. Hanna, Sep 11 2010
CROSSREFS
KEYWORD
nonn
AUTHOR
Christian G. Bower, Jun 07 2005
STATUS
approved
A265435 Riordan array (1, x*f(x)) where f(x) is the g.f. of A007564. +10
1
1, 0, 1, 0, 1, 1, 0, 4, 2, 1, 0, 19, 9, 3, 1, 0, 100, 46, 15, 4, 1, 0, 562, 254, 82, 22, 5, 1, 0, 3304, 1476, 474, 128, 30, 6, 1, 0, 20071, 8893, 2847, 773, 185, 39, 7, 1, 0, 124996, 55046, 17587, 4796, 1165, 254, 49, 8, 1, 0, 793774, 347922, 111006, 30378, 7461, 1665, 336, 60, 9, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
COMMENTS
Triangle T(n,k), 0<=k<=n, read by rows, given by (0, 1, 3, 1, 3, 1, 3, 1, 3, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
LINKS
EXAMPLE
Triangle begins:
1
0, 1
0, 1, 1
0, 4, 2, 1
0, 19, 9, 3, 1
0, 100, 46, 15, 4, 1
Production matrix begins:
0, 1
0, 1, 1
0, 3, 1, 1
0, 9, 3, 1, 1
0, 27, 9, 3, 1, 1
0, 81, 27, 9, 3, 1, 1
CROSSREFS
Cf. A007564, A108524 (row sums).
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Dec 09 2015
STATUS
approved
page 1

Search completed in 0.084 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 29 23:09 EDT 2024. Contains 375519 sequences. (Running on oeis4.)