[go: up one dir, main page]

login
Search: a108347 -id:a108347
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers of the form 3^i*5^j with i, j >= 0.
+10
45
1, 3, 5, 9, 15, 25, 27, 45, 75, 81, 125, 135, 225, 243, 375, 405, 625, 675, 729, 1125, 1215, 1875, 2025, 2187, 3125, 3375, 3645, 5625, 6075, 6561, 9375, 10125, 10935, 15625, 16875, 18225, 19683, 28125, 30375, 32805, 46875, 50625, 54675, 59049
OFFSET
1,2
COMMENTS
Odd 5-smooth numbers (A051037). - Reinhard Zumkeller, Sep 18 2005
LINKS
FORMULA
a(n) ~ 1/sqrt(15)*exp(sqrt(2*log(3)*log(5)*n)) asymptotically. - Benoit Cloitre, Jan 22 2002
The characteristic function of this sequence is given by Sum_{n >= 1} x^a(n) = Sum_{n >= 1} mu(15*n)*x^n/(1 - x^n), where mu(n) is the Möbius function A008683. Cf. with the formula of Hanna in A051037. - Peter Bala, Mar 18 2019
Sum_{n>=1} 1/a(n) = (3*5)/((3-1)*(5-1)) = 15/8. - Amiram Eldar, Sep 22 2020
MAPLE
isA003593 := proc(n)
if n = 1 then
true;
else
return (numtheory[factorset](n) minus {3, 5} = {} );
end if;
end proc:
A003593 := proc(n)
option remember;
if n = 1 then
1;
else
for a from procname(n-1)+1 do
if isA003593(a) then
return a;
end if;
end do:
end if;
end proc:
seq(A003593(n), n=1..30) ; # R. J. Mathar, Aug 04 2016
MATHEMATICA
fQ[n_] := PowerMod[15, n, n] == 0; Select[Range[60000], fQ] (* Bruno Berselli, Sep 24 2012 *)
PROG
(PARI) list(lim)=my(v=List(), N); for(n=0, log(lim)\log(5), N=5^n; while(N<=lim, listput(v, N); N*=3)); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
(PARI) is(n)=n==3^valuation(n, 3)*5^valuation(n, 5) \\ Charles R Greathouse IV, Apr 23 2013
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a003593 n = a003593_list !! (n-1)
a003593_list = f (singleton 1) where
f s = m : f (insert (3*m) $ insert (5*m) s') where
(m, s') = deleteFindMin s
-- Reinhard Zumkeller, Sep 13 2011
(Magma) [n: n in [1..60000] | PrimeDivisors(n) subset [3, 5]]; // Bruno Berselli, Sep 24 2012
(GAP) Filtered([1..60000], n->PowerMod(15, n, n)=0); # Muniru A Asiru, Mar 19 2019
(Python)
from sympy import integer_log
def A003593(n):
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return n+x-sum(integer_log(x//5**i, 3)[0]+1 for i in range(integer_log(x, 5)[0]+1))
return bisection(f, n, n) # Chai Wah Wu, Oct 22 2024
CROSSREFS
Cf. A033849, A112751-A112756, A143202, A022337 (list of j), A022336(list of i).
Cf. A264997 (partitions into), see also A264998. Cf. A108347 (odd 7-smooth).
KEYWORD
nonn
STATUS
approved
Numbers with exactly 3 distinct odd prime divisors {3,5,7}.
+10
13
105, 315, 525, 735, 945, 1575, 2205, 2625, 2835, 3675, 4725, 5145, 6615, 7875, 8505, 11025, 13125, 14175, 15435, 18375, 19845, 23625, 25515, 25725, 33075, 36015, 39375, 42525, 46305, 55125, 59535, 65625, 70875, 76545, 77175, 91875, 99225
OFFSET
1,1
COMMENTS
Numbers k such that phi(k)/k = m
( Family of sequences for successive n odd primes )
m=2/3 numbers with exactly 1 distinct prime divisor {3} see A000244
m=8/15 numbers with exactly 2 distinct prime divisors {3,5} see A033849
m=16/35 numbers with exactly 3 distinct prime divisors {3,5,7} see A147576
m=32/77 numbers with exactly 4 distinct prime divisors {3,5,7,11} see A147577
m=384/1001 numbers with exactly 5 distinct prime divisors {3,5,7,11,13} see A147578
m=6144/17017 numbers with exactly 6 distinct prime divisors {3,5,7,11,13,17} see A147579
m=3072/323323 numbers with exactly 7 distinct prime divisors {3,5,7,11,13,17,19} see A147580
m=110592/323323 numbers with exactly 8 distinct prime divisors {3,5,7,11,13,17,19,23} see A147581
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..100 from Harvey P. Dale)
FORMULA
a(n) = 105 * A108347(n). - Amiram Eldar, Mar 10 2020
Sum_{n>=1} 1/a(n) = 1/48. - Amiram Eldar, Dec 22 2020
MATHEMATICA
a = {}; Do[If[EulerPhi[x]/x == 16/35, AppendTo[a, x]], {x, 1, 100000}]; a
Select[Range[100000], EulerPhi[#]/#==16/35&] (* Harvey P. Dale, Dec 01 2013 *)
KEYWORD
nonn
AUTHOR
Artur Jasinski, Nov 07 2008
STATUS
approved
Number of paths of the simple random walk on condition that the median applied to the partial sums S_0=0, S_1,...,S_n, n odd (n=15 in this example), is equal to half-integer values k+1/2, -[n/2]-1<=k<=[n/2].
+10
4
35, 35, 245, 245, 735, 735, 1225, 1225, 1225, 1225, 735, 735, 245, 245, 35, 35
OFFSET
0,1
COMMENTS
1) Closed-form expressions for sequences see Pfeifer (2010).
2) The median taken on partial sums of the simple random walk represents the market price in a simulation model wherein a single security among non-cooperating and asymetrically informed traders is traded (Pfeifer et al. 2009).
3) A146207=A146205+(0,A146206) see lemma 2 in Pfeifer (2010).
REFERENCES
Pfeifer, C. (2010) Probability distribution of the median taken on partial sums of the simple random walk, Submitted to Stochastic Analysis and Applications
LINKS
EXAMPLE
All possible different paths (sequences of partial sums) in case of n=3:
{0,-1,-2,-3}; median=-1.5
{0,-1,-2,-1}; median=-1
{0,-1,0,-1}; median=-0.5
{0,-1,0,1}; median=0
{0,1,0,-1}; median=0
{0,1,0,1}; median=0.5
{0,1,2,1}; median=1
{0,1,2,3}; median=1.5
sequence of integers in case of n=3: 1,1,1,1
KEYWORD
fini,nonn
AUTHOR
Christian Pfeifer (christian.pfeifer(AT)uibk.ac.at), Oct 28 2008, May 04 2010
STATUS
approved
Numbers of the form (2^i)*(5^j)*(7^k), with i, j, k >= 0.
+10
3
1, 2, 4, 5, 7, 8, 10, 14, 16, 20, 25, 28, 32, 35, 40, 49, 50, 56, 64, 70, 80, 98, 100, 112, 125, 128, 140, 160, 175, 196, 200, 224, 245, 250, 256, 280, 320, 343, 350, 392, 400, 448, 490, 500, 512, 560, 625, 640, 686, 700, 784, 800, 875, 896, 980, 1000, 1024, 1120
OFFSET
1,2
COMMENTS
Numbers m | 70^e with integer e >= 0. - Michael De Vlieger, Aug 22 2019
LINKS
FORMULA
Sum_{n>=1} 1/a(n) = (2*5*7)/((2-1)*(5-1)*(7-1)) = 35/12. - Amiram Eldar, Sep 23 2020
a(n) ~ exp((6*log(2)*log(5)*log(7)*n)^(1/3)) / sqrt(70). - Vaclav Kotesovec, Sep 23 2020
MATHEMATICA
With[{n = 1120}, Sort@ Flatten@ Table[2^i * 5^j * 7^k, {i, 0, Log2@ n}, {j, 0, Log[5, n/2^i]}, {k, 0, Log[7, n/(2^i*5^j)]}]] (* Michael De Vlieger, Aug 22 2019 *)
PROG
(PARI) isok(n) = (n/(2^valuation(n, 2)*5^valuation(n, 5)*7^valuation(n, 7)) == 1); \\ Michel Marcus, Oct 01 2013
KEYWORD
nonn,easy
AUTHOR
Douglas Winston (douglas.winston(AT)srupc.com), Jul 05 2005
STATUS
approved
7-smooth numbers not divisible by 10: positive numbers whose prime divisors are all <= 7 but do not contain both 2 and 5.
+10
3
1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 14, 15, 16, 18, 21, 24, 25, 27, 28, 32, 35, 36, 42, 45, 48, 49, 54, 56, 63, 64, 72, 75, 81, 84, 96, 98, 105, 108, 112, 125, 126, 128, 135, 144, 147, 162, 168, 175, 189, 192, 196, 216, 224, 225, 243, 245, 252, 256, 288, 294, 315, 324
OFFSET
1,2
LINKS
FORMULA
Sum_{n>=1} 1/a(n) = 63/16. - Amiram Eldar, Apr 01 2021
EXAMPLE
12 is in the sequence as all of its prime divisors are <= 7 and 12 is not divisible by 10.
MATHEMATICA
Select[Range@500, Max[First/@FactorInteger@#]<=7&&Mod[#, 10]!=0&] (* Giorgos Kalogeropoulos, Mar 30 2021 *)
PROG
(PARI) is(n) = if(n%10 == 0, return(0)); forprime(p = 2, 7, n/=p^valuation(n, p)); n==1
(Python)
A342950_list, n = [], 1
while n < 10**9:
if n % 10:
m = n
for p in (2, 3, 5, 7):
q, r = divmod(m, p)
while r == 0:
m = q
q, r = divmod(m, p)
if m == 1:
A342950_list.append(n)
n += 1 # Chai Wah Wu, Mar 31 2021
(Python)
from sympy import integer_log
def A342950(n):
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x):
c = n+x
for i in range(integer_log(x, 7)[0]+1):
for j in range(integer_log(m:=x//7**i, 3)[0]+1):
c -= (k:=m//3**j).bit_length()+integer_log(k, 5)[0]
return c
return bisection(f, n, n) # Chai Wah Wu, Sep 17 2024
(Python) # faster for initial segment of sequence
import heapq
from itertools import islice
def A342950gen(): # generator of terms
v, oldv, h, psmooth_primes, = 1, 0, [1], [2, 3, 5, 7]
while True:
v = heapq.heappop(h)
if v != oldv:
yield v
oldv = v
for p in psmooth_primes:
if not (p==2 and v%5==0) and not (p==5 and v&1==0):
heapq.heappush(h, v*p)
print(list(islice(A342950gen(), 65))) # Michael S. Branicky, Sep 17 2024
CROSSREFS
Union of A108319 and A108347.
Intersection of A002473 and A067251.
KEYWORD
nonn
AUTHOR
David A. Corneth, Mar 30 2021
STATUS
approved
Triangle of divisors of 105^n, each number occurring once.
+10
1
1, 3, 5, 7, 15, 21, 35, 105, 9, 25, 45, 49, 63, 75, 147, 175, 225, 245, 315, 441, 525, 735, 1225, 1575, 2205, 3675, 11025, 27, 125, 135, 189, 343, 375, 675, 875, 945, 1029, 1125, 1323, 1715, 2625, 3087, 3375, 4725, 5145, 6125, 6615, 7875, 8575, 9261, 15435
OFFSET
0,2
COMMENTS
The length of row k is A003215(k), the centered hexagonal numbers, 3k^2 + 3k + 1.
LINKS
T. D. Noe, Rows n = 0..20
EXAMPLE
The triangle has rows beginning with 3^k and ending with 105^k:
1
3, 5, 7, 15, 21, 35, 105
9, 25, 45, 49, 63, 75, 147, 175, 225, 245, 315, 441, 525, 735, 1225, 1575, 2205, 3675, 11025
MATHEMATICA
Join[{{1}}, Table[Complement[Divisors[105^n], Divisors[105^(n-1)]], {n, 9}]]
CROSSREFS
Cf. A108347 (numbers of the form (3^i)*(5^j)*(7^k))
KEYWORD
nonn,tabf
AUTHOR
T. D. Noe, Sep 08 2011
STATUS
approved
Numbers k such that 1 < gcd(k, 105) < k and A007947(k) does not divide 105.
+10
1
6, 10, 12, 14, 18, 20, 24, 28, 30, 33, 36, 39, 40, 42, 48, 50, 51, 54, 55, 56, 57, 60, 65, 66, 69, 70, 72, 77, 78, 80, 84, 85, 87, 90, 91, 93, 95, 96, 98, 99, 100, 102, 108, 110, 111, 112, 114, 115, 117, 119, 120, 123, 126, 129, 130, 132, 133, 138, 140, 141, 144, 145, 150, 153, 154, 155, 156, 159, 160
OFFSET
1,1
COMMENTS
The asymptotic density of this sequence is 19/35. - Amiram Eldar, Dec 02 2023
LINKS
Michael De Vlieger, Diagram showing numbers k in this sequence instead as k mod 105, in black, else white if k is coprime to 105, purple if k = 1, red if k | 105, and gold if rad(k) | 105, magnification 10X.
FORMULA
This sequence is { N \ { A108347 U A236206 } }.
MATHEMATICA
With[{n = 105}, Select[Range[200], And[! CoprimeQ[#, n], ! Divisible[n, Times @@ FactorInteger[#][[All, 1]]]] & ] ]
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael De Vlieger, Apr 04 2023
STATUS
approved
Numbers n such that the decimal digits of n are also the prime divisors of n.
+10
0
2, 3, 5, 7, 735, 2333772
OFFSET
1,1
COMMENTS
The sequence is given for a(n) < 10^11.
No more terms <= 10^150. Terms are of the form 2^e2 * 3^e3 * 7^e7 or of the form 3^e3 * 5^e5 * 7^e7, for which no other number <= 10^150 than those listed is a term. - David A. Corneth, Sep 28 2019
EXAMPLE
735 = 3*5*7^2 is in the sequence because the digits 7, 3 and 5 are also the prime divisors of 735.
MAPLE
with(numtheory):nn:=1000000:for n from 1 to 10^11 do:lst:={}:x:=factorset(n):y:=convert(n, base, 10):n1:=nops(x):n2:=nops(y): for j from 1 to n2 do:lst:=lst union {y[j]}:od:if x=lst then print(n):else fi:od:
CROSSREFS
Subsequence of A046034.
KEYWORD
nonn,base,hard
AUTHOR
Michel Lagneau, Apr 27 2014
STATUS
approved

Search completed in 0.013 seconds