[go: up one dir, main page]

login
Search: a107579 -id:a107579
     Sort: relevance | references | number | modified | created      Format: long | short | data
Primes p where the digital sum is equal to 68.
+10
43
59999999, 69999899, 69999989, 78998999, 88989899, 88999979, 89699999, 89799989, 89989799, 89989979, 89997899, 89997989, 89999699, 89999969, 97889999, 98699999, 98879999, 98899799, 98979989, 98988899, 98989889, 98997989, 98998979, 98999969
OFFSET
1,1
LINKS
Vincenzo Librandi and Chai Wah Wu, Table of n, a(n) for n = 1..10000 n = 1..45 from Vincenzo Librandi.
EXAMPLE
69999899 is a prime with sum of the digits = 68, hence belongs to the sequence.
MATHEMATICA
Select[Prime[Range[10000000]], Total[IntegerDigits[#]]==68 &]
PROG
(Magma) [p: p in PrimesUpTo(100000000) | &+Intseq(p) eq 68];
(Python) # see code in A107579: the same code can be used to produce this sequence, by giving the initial term p = 6*10**7-1, for digit sum 68. - M. F. Hasler, Mar 16 2022
CROSSREFS
Cf. Primes p where the digital sum is equal to k: 2, 11 and 101 for k=2; A062339 (k=4), A062341 (k=5), A062337 (k=7), A062343 (k=8), A107579 (k=10), A106754 (k=11), A106755 (k=13), A106756 (k=14), A106757 (k=16), A106758 (k=17), A106759 (k=19), A106760 (k=20), A106761 (k=22), A106762 (k=23), A106763 (k=25), A106764 (k=26), A048517 (k=28), A106766 (k=29), A106767 (k=31), A106768 (k=32), A106769 (k=34), A106770 (k=35), A106771 (k=37), A106772 (k=38), A106773 (k=40), A106774 (k=41), A106775 (k=43), A106776 (k=44), A106777 (k=46), A106778 (k=47), A106779 (k=49), A106780 (k=50), A106781 (k=52), A106782 (k=53), A106783 (k=55), A106784 (k=56), A106785 (k=58), A106786 (k=59), A106787 (k=61), A107617 (k=62), A107618 (k=64), A107619 (k=65), A106807 (k=67), this sequence (k=68), A181321 (k=70).
KEYWORD
nonn,base
AUTHOR
Vincenzo Librandi, Jul 08 2014
STATUS
approved
Primes whose sum of digits is 4.
+10
26
13, 31, 103, 211, 1021, 1201, 2011, 3001, 10111, 20011, 20101, 21001, 100003, 102001, 1000003, 1011001, 1020001, 1100101, 2100001, 10010101, 10100011, 20001001, 30000001, 101001001, 200001001, 1000000021, 1000001011, 1000010101, 1000020001, 1000200001, 1002000001, 1010000011
OFFSET
1,1
COMMENTS
Is this sequence (and its brothers A062337, A062341 and A062343) infinite?
10^A049054(m)+3 and 3*10^A056807(m)+1 are subsequences. A107715 (primes containing only digits from set {0,1,2,3}) is a supersequence. Terms not containing the digit 3 are either terms of A020449 (primes that contain digits 0 and 1 only) or of A106100 (primes with maximal digit 2) - and thus terms of these sequences' union A036953 (primes containing only digits from set {0,1,2}). - Rick L. Shepherd, May 23 2005
LINKS
T. D. Noe and Robert Israel, Table of n, a(n) for n = 1..10000 (n = 1..1000 from T. D. Noe)
Amin Witno, Numbers which factor as their digital sum times a prime, International Journal of Open Problems in Computer Science and Mathematics 3:2 (2010), pp. 132-136.
FORMULA
Intersection of A052218 (digit sum 4) and A000040 (primes). - M. F. Hasler, Mar 09 2022
EXAMPLE
3001 is a prime with sum of digits = 4, hence belongs to the sequence.
MAPLE
N:= 20: # to get all terms < 10^N
B[1]:= {1}:
B[2]:= {2}:
B[3]:= {3}:
A:= {}:
for d from 2 to N do
B[4]:= map(t -> 10*t+1, B[3]) union map(t -> 10*t+3, B[1]);
B[3]:= map(t -> 10*t, B[3]) union map(t -> 10*t+1, B[2]) union map(t -> 10*t+2, B[1]);
B[2]:= map(t -> 10*t, B[2]) union map(t -> 10*t+1, B[1]);
B[1]:= map(t -> 10*t, B[1]);
A:= A union select(isprime, B[4]);
od:
sort(convert(A, list)); # Robert Israel, Dec 28 2015
MATHEMATICA
Union[FromDigits/@Select[Flatten[Table[Tuples[{0, 1, 2, 3}, k], {k, 9}], 1], PrimeQ[FromDigits[#]]&&Total[#]==4&]] (* Jayanta Basu, May 19 2013 *)
PROG
(PARI) for(a=1, 20, for(b=0, a, for(c=0, b, if(isprime(k=10^a+10^b+10^c+1), print1(k", "))))) \\ Charles R Greathouse IV, Jul 26 2011
(PARI) select( {is_A062339(p, s=4)=sumdigits(p)==s&&isprime(p)}, primes([1, 10^7])) \\ 2nd optional parameter for similar sequences with other digit sums. M. F. Hasler, Mar 09 2022
(PARI) A062339_upto_length(L, s=4, a=List(), u=[10^(L-k)|k<-[1..L]])=forvec(d=[[1, L]|i<-[1..s]], isprime(p=vecsum(vecextract(u, d))) && listput(a, p), 1); Vecrev(a) \\ M. F. Hasler, Mar 09 2022
(Magma) [p: p in PrimesUpTo(800000000) | &+Intseq(p) eq 4]; // Vincenzo Librandi, Jul 08 2014
CROSSREFS
Subsequence of A062338, A107288, and A107715 (primes with digits <= 3).
A159352 is a subsequence.
Cf. A000040 (primes), A052218 (digit sum = 4), A061239 (primes == 4 (mod 9)).
Cf. Primes p with digital sum equal to k: {2, 11 and 101} for k=2; this sequence (k=4), A062341 (k=5), A062337 (k=7), A062343 (k=8), A107579 (k=10), A106754 (k=11), A106755 (k=13), A106756 (k=14), A106757 (k=16), A106758 (k=17), A106759 (k=19), A106760 (k=20), A106761 (k=22), A106762 (k=23), A106763 (k=25), A106764 (k=26), A048517 (k=28), A106766 (k=29), A106767 (k=31), A106768 (k=32), A106769 (k=34), A106770 (k=35), A106771 (k=37), A106772 (k=38), A106773 (k=40), A106774 (k=41), A106775 (k=43), A106776 (k=44), A106777 (k=46), A106778 (k=47), A106779 (k=49), A106780 (k=50), A106781 (k=52), A106782 (k=53), A106783 (k=55), A106784 (k=56), A106785 (k=58), A106786 (k=59), A106787 (k=61), A107617 (k=62), A107618 (k=64), A107619 (k=65), A106807 (k=67), A244918 (k=68), A181321 (k=70).
Cf. A049054 (10^k+3 is prime), A159352 (these primes).
Cf. A056807 (3*10^k+1 is prime), A259866 (these primes).
Cf. A020449 (primes with digits 0 and 1), A036953 (primes with digits <= 2), A106100 (primes with largest digit = 2), A069663, A069664 (smallest resp. largest n-digit prime with minimum digit sum).
KEYWORD
nonn,base
AUTHOR
Amarnath Murthy, Jun 21 2001
EXTENSIONS
Corrected and extended by Larry Reeves (larryr(AT)acm.org), Jul 06 2001
More terms from Rick L. Shepherd, May 23 2005
More terms from Lekraj Beedassy, Dec 19 2007
STATUS
approved
Primes whose sum of digits is 8.
+10
13
17, 53, 71, 107, 233, 251, 431, 503, 521, 701, 1061, 1151, 1223, 1511, 1601, 2141, 2213, 2411, 3023, 3041, 3203, 3221, 4013, 4211, 5003, 5021, 6011, 6101, 7001, 10007, 10061, 10133, 10151, 10223, 10313, 10331, 10601, 11213, 11321, 11411
OFFSET
1,1
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..42745 (first 500 terms from Vincenzo Librandi)
FORMULA
Intersection of A000040 (primes) and A052222 (digit sum 8). - M. F. Hasler, Mar 09 2022
EXAMPLE
1151 belongs to the sequence since it is a prime with sum of digits = 8.
MATHEMATICA
Select[Prime[Range[500000]], Total[IntegerDigits[#]]==8 &] (* Vincenzo Librandi, Jul 08 2014 *)
PROG
(Magma) [p: p in PrimesUpTo(20000) | &+Intseq(p) eq 8]; // Vincenzo Librandi, Jul 08 2014
From M. F. Hasler, Mar 09 2022: (Start)
(PARI) select( {is_A062343(p, s=8)=sumdigits(p)==s&&isprime(p)}, primes([1, 12345])) \\ 2nd optional parameter for similar sequences with other digit sums.
(PARI) {A062343_upto_length(L, s=8, a=List(), u=[10^(L-k)|k<-[1..L]])=forvec(d=[[1, L]|i<-[1..s]], isprime(p=vecsum(vecextract(u, d))) && listput(a, p), 1); Vecrev(a)} \\ (End)
CROSSREFS
Cf. A000040 (primes), A007953 (sum of digits), A052222 (digit sum = 8).
Cf. A062339 (same for digit sum s = 4), A062341 (s = 5), A062337 (s = 7), A107579 (s = 10), and others listed in A244918 (s = 68).
Subsequence of A062342 (primes with digit sum divisible by 8).
KEYWORD
nonn,base,easy
AUTHOR
Amarnath Murthy, Jun 21 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Jul 06 2001
STATUS
approved
Primes p with digital sum equal to 11.
+10
12
29, 47, 83, 137, 173, 191, 227, 263, 281, 317, 353, 443, 461, 641, 821, 911, 1019, 1091, 1109, 1163, 1181, 1217, 1307, 1361, 1433, 1451, 1523, 1613, 1721, 1811, 1901, 2027, 2063, 2081, 2153, 2207, 2243, 2333, 2351, 2423, 2441, 2531, 2621, 2711, 2801, 3251
OFFSET
1,1
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..41771 (first 2000 terms from Vincenzo Librandi)
FORMULA
Intersection of A000040 (primes) and A166311 (digit sum = 11), also equals { p in A000040 | A007953(p) = 11 }. - M. F. Hasler, Mar 09 2022
MATHEMATICA
Select[Prime[Range[100000]], Total[IntegerDigits[#]]==11 &] (* Vincenzo Librandi, Jul 08 2014 *)
PROG
(Magma) [p: p in PrimesUpTo(10000) | &+Intseq(p) eq 11]; // Vincenzo Librandi, Jul 08 2014
(PARI) select( {is_A106754(n)=sumdigits(n)==11&&isprime(n)}, primes([1, 3333])) \\ M. F. Hasler, Mar 09 2022
CROSSREFS
Cf. A000040 (primes), A007953 (sum of digits), A166311 (digit sum = 11).
Cf. A062339 (same for digit sum s = 4), ..., A107579 (s = 10), A106755 (s = 13), and others listed in A244918 (s = 68).
Subsequence of A119891 (prime trios: chain of prime sums of digits; also has as subsequence A106762 (s = 23), A106774 (s = 41), etc).
KEYWORD
nonn,base
AUTHOR
Zak Seidov, May 16 2005
STATUS
approved
Primes with digit sum = 26.
+10
4
1889, 1979, 1997, 2699, 2789, 2879, 2897, 2969, 3779, 3797, 4679, 4787, 4877, 4967, 5399, 5669, 5849, 5867, 5939, 6299, 6389, 6569, 6659, 6857, 6947, 6983, 7487, 7559, 7577, 7649, 7757, 7793, 7829, 7883, 7919, 7937, 8297, 8369, 8387, 8693, 8747, 8783
OFFSET
1,1
LINKS
MATHEMATICA
Select[Prime[Range[1300]], Total[IntegerDigits[#]]==26&] (* Harvey P. Dale, Feb 14 2011 *)
PROG
(Magma) [p: p in PrimesUpTo(9000) | &+Intseq(p) eq 26]; // Vincenzo Librandi, Jul 08 2014
(PARI) select(x->sumdigits(x)==26, primes(1000)) \\ Michel Marcus, Jul 08 2014
(Python)
a=A107579(p=1889); [next(a) for _ in range(50)] # providing optional 1st arg = initial term, to "universal" code in A107579. - M. F. Hasler, Mar 16 2022
CROSSREFS
Cf. similar sequences listed in A244918.
KEYWORD
nonn,base
AUTHOR
Zak Seidov, May 16 2005
STATUS
approved
Primes whose digit sum contains one or more digits of the same prime.
+10
4
2, 3, 5, 7, 19, 109, 127, 137, 139, 149, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 271, 281, 283, 307, 317, 337, 347, 367, 373, 379, 397, 419, 461, 463, 467, 491, 541, 557, 571, 613, 617, 619, 631, 641, 643, 647, 661, 673, 691, 719, 733, 739, 743, 751
OFFSET
1,1
LINKS
EXAMPLE
139 is a prime whose digit sum of 13 contains the digits 1 and 3 which are also in the prime.
149 is a prime whose digit sum of 14 contains the digits 1 and 4 which are also in the prime.
419 is a prime whose digit sum of 14 contains the digits 1 and 4 which are also in the prime.
MAPLE
filter:= proc(n) local L, s;
L:= convert(n, base, 10);
s:= convert(L, `+`);
convert(convert(s, base, 10), set) intersect convert(L, set) <> {}
end proc:
select(filter, [seq(ithprime(i), i=1..100)]); # Robert Israel, Feb 27 2023
PROG
(PARI) isok(p) = isprime(p) && (#setintersect(Set(digits(p)), Set(digits(sumdigits(p)))) >= 1); \\ Michel Marcus, Nov 12 2017
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Parthasarathy Nambi, Mar 20 2009
EXTENSIONS
Single-digit primes added by R. J. Mathar, Jul 08 2009
Typos in data corrected by D. S. McNeil and Andrew Weimholt, Aug 17 2010
STATUS
approved
Primes with digital sum 70.
+10
4
189997999, 199799989, 199898899, 199997899, 199997989, 199998889, 268999999, 269998999, 278989999, 278999989, 279889999, 279988999, 287998999, 287999989, 288998989, 288999889, 288999979, 289699999, 289789999, 289889989
OFFSET
1,1
COMMENTS
The sequence begins with 8438 9-digit numbers.
Then there are 739572 10-digit numbers.
All terms == 7 (mod 18).
MATHEMATICA
Select[Prime[Range[3*10^8]], Total[IntegerDigits[#]]==70 &] (* Vincenzo Librandi, Jul 09 2014 *)
PROG
(Magma) [p: p in PrimesUpTo(3*10^8) | &+Intseq(p) eq 70]; // Vincenzo Librandi, Jul 09 2014
(Python) # see code in A107579 which can be used to produce this sequence by giving the initial term p = 189997999 (or 8*10**7-1, for digit sum 70). - M. F. Hasler, Mar 16 2022
CROSSREFS
Cf. similar sequences listed in A244918.
KEYWORD
nonn,base
AUTHOR
Zak Seidov, Jan 26 2011
STATUS
approved
Primes whose sum of digits is a multiple of 5.
+10
3
5, 19, 23, 37, 41, 73, 109, 113, 127, 131, 163, 181, 271, 307, 311, 389, 401, 433, 479, 523, 541, 569, 587, 613, 631, 659, 677, 811, 839, 857, 929, 947, 983, 997, 1009, 1013, 1031, 1063, 1103, 1117, 1153, 1171, 1289, 1301, 1423, 1487, 1531, 1559, 1621, 1667
OFFSET
1,1
LINKS
FORMULA
Intersection of A000040 (primes) and A227793 (sum of digits in 5Z). - M. F. Hasler, Mar 10 2022
EXAMPLE
569 is a prime with sum of digits = 20, hence belongs to the sequence.
MATHEMATICA
Select[Prime[Range[300]], Divisible[Total[IntegerDigits[#]], 5]&] (* Harvey P. Dale, Jul 06 2020 *)
PROG
(Magma) [ p: p in PrimesUpTo(10000) | &+Intseq(p) mod 5 eq 0 ]; // Vincenzo Librandi, Apr 02 2011
(Python)
from sympy import primerange as primes
def ok(p): return sum(map(int, str(p)))%5 == 0
print(list(filter(ok, primes(1, 1668)))) # Michael S. Branicky, May 19 2021
(PARI) select( {is_A062340(n)=sumdigits(n)%5==0&&isprime(n)}, primes([1, 2000])) \\ M. F. Hasler, Mar 10 2022
CROSSREFS
Cf. A007953 (sum of digits), A227793 (sum of digits divisible by 5).
Has as subsequence A062341 (primes with sum of digits s = 5), A107579 (s = 10), A106760 (s = 20), A106763 (s = 25), A106770 (s = 35), A106773 (s = 40), A106780 (s = 50), A106783 (s = 55), A107619 (s = 65) and A181321 (s = 70).
Cf. A062340 (equivalent for 8).
KEYWORD
nonn,base,easy
AUTHOR
Amarnath Murthy, Jun 21 2001
EXTENSIONS
Corrected and extended by Harvey P. Dale and Larry Reeves (larryr(AT)acm.org), Jul 04 2001
STATUS
approved
Palindromic primes with digit sum 20.
+10
3
929, 16661, 17471, 36263, 70607, 72227, 73037, 91019, 1074701, 1082801, 1180811, 1262621, 1328231, 1360631, 1508051, 1532351, 1630361, 1712171, 1802081, 3160613, 3218123, 7014107, 7300037, 9002009, 102383201, 102707201, 103282301
OFFSET
1,1
COMMENTS
Cf. A070250 Palindromic primes with digit sum 10, A107579 Primes with digit sum = 10, A106760 Primes with digit sum = 20, A109185 Palindromic primes with digit sum 40.
MATHEMATICA
Select[Prime[Range[5940000]], PalindromeQ[#]&&Total[IntegerDigits[#]]==20&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 19 2021 *)
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Zak Seidov, Jun 22 2005
STATUS
approved
Palindromic primes with digit sum = 40.
+10
3
97879, 98689, 1878781, 1968691, 1976791, 1984891, 3768673, 3784873, 3792973, 3858583, 3948493, 3964693, 7278727, 7392937, 7466647, 7564657, 7654567, 7662667, 7850587, 7916197, 9078709, 9446449, 9470749, 9626269, 9634369
OFFSET
1,1
COMMENTS
Cf. A070250 Palindromic primes with digit sum = 10, A107579 Primes with digit sum = 10, A106760 Primes with digit sum = 20, A109184 Palindromic primes with digit sum = 20, A109207 Palindromic primes with digit sum = 50.
MATHEMATICA
Select[Prime@ Range[9000, 10^6], And[# == Reverse@ #, Total@ # == 40] &@ IntegerDigits@ # &] (* Michael De Vlieger, Dec 18 2015 *)
PROG
(PARI) isok(n) = isprime(n) && (d=digits(n)) && (Vecrev(d)==d) && (sumdigits(n)==40); \\ Michel Marcus, Dec 18 2015
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Zak Seidov, Jun 22 2005
STATUS
approved

Search completed in 0.015 seconds