[go: up one dir, main page]

login
Search: a106316 -id:a106316
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = A000010(n) - A106316(n).
+20
5
1, 0, 0, 1, 0, 2, 0, 2, 5, 0, 0, 0, 0, -2, -4, 6, 0, -6, 0, -8, -8, -6, 0, -4, 7, -8, 17, 12, 0, -16, 0, 13, 17, -12, 15, -3, 0, -14, 19, 6, 0, 6, 0, 8, -12, -18, 0, 4, 9, -1, 23, 6, 0, 0, 36, -8, 25, -24, 0, -32, 0, -26, 33, 29, 40, -10, 0, 2, 29, -34, 0, 12, 0, -32, 37, 0, 40, -18, 0, -24, 12, -36, 0, -4, 48, -38, 35, -36, 0, -30, 44, -4, 37, -42, 52, -16, 0
OFFSET
1,6
LINKS
FORMULA
a(n) = A000010(n) - A106316(n).
PROG
(PARI)
A106315(n) = (n*numdiv(n) % sigma(n));
A106316(n) = (A106315(n) % n);
A324045(n) = (eulerphi(n) - A106316(n));
KEYWORD
sign
AUTHOR
Antti Karttunen, Feb 13 2019
STATUS
approved
a(n) = gcd(n, A106316(n)).
+20
5
1, 1, 1, 1, 1, 6, 1, 2, 1, 2, 1, 4, 1, 2, 3, 2, 1, 6, 1, 4, 1, 2, 1, 12, 1, 2, 1, 28, 1, 6, 1, 1, 3, 2, 1, 3, 1, 2, 1, 10, 1, 6, 1, 4, 9, 2, 1, 12, 1, 1, 3, 2, 1, 18, 1, 8, 1, 2, 1, 12, 1, 2, 3, 1, 1, 6, 1, 2, 3, 2, 1, 12, 1, 2, 3, 4, 1, 6, 1, 8, 3, 2, 1, 28, 1, 2, 3, 4, 1, 18, 7, 4, 1, 2, 5, 48, 1, 1, 9, 4, 1, 6, 1, 2, 3
OFFSET
1,6
LINKS
FORMULA
a(n) = gcd(n, A106316(n)).
PROG
(PARI)
A106315(n) = (n*numdiv(n) % sigma(n));
A106316(n) = (A106315(n) % n);
A324046(n) = gcd(n, A106316(n));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 13 2019
STATUS
approved
a(n) = A000203(n) - A106316(n).
+20
5
1, 2, 2, 6, 2, 12, 2, 13, 12, 14, 2, 24, 2, 16, 12, 29, 2, 27, 2, 26, 12, 20, 2, 48, 18, 22, 39, 56, 2, 48, 2, 60, 45, 26, 39, 76, 2, 28, 51, 80, 2, 90, 2, 72, 42, 32, 2, 112, 24, 72, 63, 80, 2, 102, 68, 88, 69, 38, 2, 120, 2, 40, 101, 124, 76, 114, 2, 96, 81, 86, 2, 183, 2, 46, 121, 104, 76, 126, 2, 130, 79, 50, 2, 196, 92, 52
OFFSET
1,2
LINKS
FORMULA
a(n) = A000203(n) - A106316(n).
PROG
(PARI)
A106315(n) = (n*numdiv(n) % sigma(n));
A106316(n) = (A106315(n) % n);
A324047(n) = (sigma(n) - A106316(n));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 13 2019
STATUS
approved
Harmonic residue of n.
+10
15
0, 1, 2, 5, 4, 0, 6, 2, 1, 4, 10, 16, 12, 8, 12, 18, 16, 30, 18, 36, 20, 16, 22, 12, 13, 20, 28, 0, 28, 24, 30, 3, 36, 28, 44, 51, 36, 32, 44, 50, 40, 48, 42, 12, 36, 40, 46, 108, 33, 21, 60, 18, 52, 72, 4, 88, 68, 52, 58, 48, 60, 56, 66, 67, 8, 96, 66, 30, 84, 128, 70, 84, 72, 68, 78
OFFSET
1,3
COMMENTS
The harmonic residue is the remainder when n*d(n) is divided by sigma(n), where d(n) is the number of divisors of n and sigma(n) is the sum of the divisors of n. If n is perfect, the harmonic residue of n is 0.
LINKS
FORMULA
a(n) = A038040(n) - A000203(n) * A240471(n) . - Reinhard Zumkeller, Apr 06 2014
MAPLE
A106315 := proc(n)
modp(n*numtheory[tau](n), numtheory[sigma](n)) ;
end proc:
seq(A106315(n), n=1..100) ; # R. J. Mathar, Jan 25 2017
MATHEMATICA
HarmonicResidue[n_]=Mod[n*DivisorSigma[0, n], DivisorSigma[1, n]]; HarmonicResidue[ Range[ 80]]
PROG
(Haskell)
a106315 n = n * a000005 n `mod` a000203 n -- Reinhard Zumkeller, Apr 06 2014
CROSSREFS
Cf. A106316, A106317, A001599 (positions of zeros).
KEYWORD
nonn
AUTHOR
George J. Schaeffer (gschaeff(AT)andrew.cmu.edu), Apr 29 2005
EXTENSIONS
Mathematica program completed by Harvey P. Dale, Feb 29 2024
STATUS
approved
a(n) = gcd(n*d(n), sigma(n)), where d(n) = number of divisors of n (A000005) and sigma(n) = sum of divisors of n (A000203).
+10
10
1, 1, 2, 1, 2, 12, 2, 1, 1, 2, 2, 4, 2, 8, 12, 1, 2, 3, 2, 6, 4, 4, 2, 12, 1, 2, 4, 56, 2, 24, 2, 3, 12, 2, 4, 1, 2, 4, 4, 10, 2, 48, 2, 12, 6, 8, 2, 4, 3, 3, 12, 2, 2, 24, 4, 8, 4, 2, 2, 24, 2, 8, 2, 1, 4, 48, 2, 6, 12, 16, 2, 3, 2, 2, 2, 4, 4, 24, 2, 2, 1, 2, 2, 112, 4, 4, 12, 4, 2, 18, 28, 24, 4, 8, 20, 36, 2, 3, 6, 1, 2, 24, 2, 2, 24
OFFSET
1,3
COMMENTS
Records 1, 2, 12, 56, 112, 120, 336, 720, 992, 2016, 4368, 8640, 14880, 16256, 26208, 59520, 78624, 120960, 131040, 191520, 227584, 297600, ... occur at positions: 1, 3, 6, 28, 84, 120, 140, 270, 496, 672, 1638, 2970, 6200, 8128, 8190, 18600, 27846, 30240, 32760, 55860, 105664, 117800, ... . Note that A001599 is not a subsequence of the latter, as at least 18620 (present in A001599) is missing.
FORMULA
a(n) = gcd(A000203(n), A038040(n)).
a(n) = A324058(A156552(n)).
MATHEMATICA
Table[GCD[n DivisorSigma[0, n], DivisorSigma[1, n]], {n, 120}] (* Harvey P. Dale, Feb 17 2023 *)
PROG
(PARI) A324121(n) = gcd(sigma(n), n*numdiv(n));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 15 2019
STATUS
approved
a(n) = sigma(n) - gcd(n*d(n), sigma(n)), where d(n) = number of divisors of n (A000005) and sigma(n) = sum of divisors of n (A000203).
+10
4
0, 2, 2, 6, 4, 0, 6, 14, 12, 16, 10, 24, 12, 16, 12, 30, 16, 36, 18, 36, 28, 32, 22, 48, 30, 40, 36, 0, 28, 48, 30, 60, 36, 52, 44, 90, 36, 56, 52, 80, 40, 48, 42, 72, 72, 64, 46, 120, 54, 90, 60, 96, 52, 96, 68, 112, 76, 88, 58, 144, 60, 88, 102, 126, 80, 96, 66, 120, 84, 128, 70, 192, 72, 112, 122, 136, 92, 144, 78, 184, 120, 124, 82
OFFSET
1,2
FORMULA
a(n) = A000203(n) - A324121(n) = A000203(n) - gcd(A000203(n), A038040(n)).
PROG
(PARI) A324122(n) = (sigma(n) - gcd(sigma(n), n*numdiv(n)));
CROSSREFS
Cf. A001599 (positions of zeros).
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 15 2019
STATUS
approved
Numbers k such that the remainder of the harmonic residue of k when divided by k is k-1.
+10
3
1, 2, 3, 5, 7, 11, 13, 17, 19, 21, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199
OFFSET
1,2
FORMULA
It appears that k is in the sequence iff k is prime or k is in {1, 21, 822857} (Verified to 3.1*10^6). It is true that if k is the product of two distinct primes, then k=21. - George J. Schaeffer (gschaeff(AT)andrew.cmu.edu), Apr 30 2005, R. J. Mathar, Jan 25 2017
The are no other nonprime terms below 10^11. - Amiram Eldar, Jan 09 2024
PROG
(PARI) is(n) = {my(f = factor(n)); n*numdiv(f) % sigma(f) == n - 1; } \\ Amiram Eldar, Jan 09 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
George J. Schaeffer (gschaeff(AT)andrew.cmu.edu), Apr 29 2005
STATUS
approved

Search completed in 0.010 seconds