Displaying 1-7 of 7 results found.
page
1
1, 0, 0, 1, 0, 2, 0, 2, 5, 0, 0, 0, 0, -2, -4, 6, 0, -6, 0, -8, -8, -6, 0, -4, 7, -8, 17, 12, 0, -16, 0, 13, 17, -12, 15, -3, 0, -14, 19, 6, 0, 6, 0, 8, -12, -18, 0, 4, 9, -1, 23, 6, 0, 0, 36, -8, 25, -24, 0, -32, 0, -26, 33, 29, 40, -10, 0, 2, 29, -34, 0, 12, 0, -32, 37, 0, 40, -18, 0, -24, 12, -36, 0, -4, 48, -38, 35, -36, 0, -30, 44, -4, 37, -42, 52, -16, 0
PROG
(PARI)
A106315(n) = (n*numdiv(n) % sigma(n));
1, 1, 1, 1, 1, 6, 1, 2, 1, 2, 1, 4, 1, 2, 3, 2, 1, 6, 1, 4, 1, 2, 1, 12, 1, 2, 1, 28, 1, 6, 1, 1, 3, 2, 1, 3, 1, 2, 1, 10, 1, 6, 1, 4, 9, 2, 1, 12, 1, 1, 3, 2, 1, 18, 1, 8, 1, 2, 1, 12, 1, 2, 3, 1, 1, 6, 1, 2, 3, 2, 1, 12, 1, 2, 3, 4, 1, 6, 1, 8, 3, 2, 1, 28, 1, 2, 3, 4, 1, 18, 7, 4, 1, 2, 5, 48, 1, 1, 9, 4, 1, 6, 1, 2, 3
PROG
(PARI)
A106315(n) = (n*numdiv(n) % sigma(n));
1, 2, 2, 6, 2, 12, 2, 13, 12, 14, 2, 24, 2, 16, 12, 29, 2, 27, 2, 26, 12, 20, 2, 48, 18, 22, 39, 56, 2, 48, 2, 60, 45, 26, 39, 76, 2, 28, 51, 80, 2, 90, 2, 72, 42, 32, 2, 112, 24, 72, 63, 80, 2, 102, 68, 88, 69, 38, 2, 120, 2, 40, 101, 124, 76, 114, 2, 96, 81, 86, 2, 183, 2, 46, 121, 104, 76, 126, 2, 130, 79, 50, 2, 196, 92, 52
PROG
(PARI)
A106315(n) = (n*numdiv(n) % sigma(n));
0, 1, 2, 5, 4, 0, 6, 2, 1, 4, 10, 16, 12, 8, 12, 18, 16, 30, 18, 36, 20, 16, 22, 12, 13, 20, 28, 0, 28, 24, 30, 3, 36, 28, 44, 51, 36, 32, 44, 50, 40, 48, 42, 12, 36, 40, 46, 108, 33, 21, 60, 18, 52, 72, 4, 88, 68, 52, 58, 48, 60, 56, 66, 67, 8, 96, 66, 30, 84, 128, 70, 84, 72, 68, 78
COMMENTS
The harmonic residue is the remainder when n*d(n) is divided by sigma(n), where d(n) is the number of divisors of n and sigma(n) is the sum of the divisors of n. If n is perfect, the harmonic residue of n is 0.
MAPLE
modp(n*numtheory[tau](n), numtheory[sigma](n)) ;
end proc:
MATHEMATICA
HarmonicResidue[n_]=Mod[n*DivisorSigma[0, n], DivisorSigma[1, n]]; HarmonicResidue[ Range[ 80]]
AUTHOR
George J. Schaeffer (gschaeff(AT)andrew.cmu.edu), Apr 29 2005
a(n) = gcd(n*d(n), sigma(n)), where d(n) = number of divisors of n ( A000005) and sigma(n) = sum of divisors of n ( A000203).
+10
10
1, 1, 2, 1, 2, 12, 2, 1, 1, 2, 2, 4, 2, 8, 12, 1, 2, 3, 2, 6, 4, 4, 2, 12, 1, 2, 4, 56, 2, 24, 2, 3, 12, 2, 4, 1, 2, 4, 4, 10, 2, 48, 2, 12, 6, 8, 2, 4, 3, 3, 12, 2, 2, 24, 4, 8, 4, 2, 2, 24, 2, 8, 2, 1, 4, 48, 2, 6, 12, 16, 2, 3, 2, 2, 2, 4, 4, 24, 2, 2, 1, 2, 2, 112, 4, 4, 12, 4, 2, 18, 28, 24, 4, 8, 20, 36, 2, 3, 6, 1, 2, 24, 2, 2, 24
COMMENTS
Records 1, 2, 12, 56, 112, 120, 336, 720, 992, 2016, 4368, 8640, 14880, 16256, 26208, 59520, 78624, 120960, 131040, 191520, 227584, 297600, ... occur at positions: 1, 3, 6, 28, 84, 120, 140, 270, 496, 672, 1638, 2970, 6200, 8128, 8190, 18600, 27846, 30240, 32760, 55860, 105664, 117800, ... . Note that A001599 is not a subsequence of the latter, as at least 18620 (present in A001599) is missing.
MATHEMATICA
Table[GCD[n DivisorSigma[0, n], DivisorSigma[1, n]], {n, 120}] (* Harvey P. Dale, Feb 17 2023 *)
PROG
(PARI) A324121(n) = gcd(sigma(n), n*numdiv(n));
CROSSREFS
Cf. A000005, A000203, A001599, A038040, A106315, A106316, A156552, A324045, A324046, A324047, A324058, A324122.
a(n) = sigma(n) - gcd(n*d(n), sigma(n)), where d(n) = number of divisors of n ( A000005) and sigma(n) = sum of divisors of n ( A000203).
+10
4
0, 2, 2, 6, 4, 0, 6, 14, 12, 16, 10, 24, 12, 16, 12, 30, 16, 36, 18, 36, 28, 32, 22, 48, 30, 40, 36, 0, 28, 48, 30, 60, 36, 52, 44, 90, 36, 56, 52, 80, 40, 48, 42, 72, 72, 64, 46, 120, 54, 90, 60, 96, 52, 96, 68, 112, 76, 88, 58, 144, 60, 88, 102, 126, 80, 96, 66, 120, 84, 128, 70, 192, 72, 112, 122, 136, 92, 144, 78, 184, 120, 124, 82
PROG
(PARI) A324122(n) = (sigma(n) - gcd(sigma(n), n*numdiv(n)));
Numbers k such that the remainder of the harmonic residue of k when divided by k is k-1.
+10
3
1, 2, 3, 5, 7, 11, 13, 17, 19, 21, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199
FORMULA
It appears that k is in the sequence iff k is prime or k is in {1, 21, 822857} (Verified to 3.1*10^6). It is true that if k is the product of two distinct primes, then k=21. - George J. Schaeffer (gschaeff(AT)andrew.cmu.edu), Apr 30 2005, R. J. Mathar, Jan 25 2017
The are no other nonprime terms below 10^11. - Amiram Eldar, Jan 09 2024
PROG
(PARI) is(n) = {my(f = factor(n)); n*numdiv(f) % sigma(f) == n - 1; } \\ Amiram Eldar, Jan 09 2024
AUTHOR
George J. Schaeffer (gschaeff(AT)andrew.cmu.edu), Apr 29 2005
Search completed in 0.010 seconds
|