[go: up one dir, main page]

login
Search: a104770 -id:a104770
     Sort: relevance | references | number | modified | created      Format: long | short | data
Expansion of g.f. -x/(1+x-x^3).
+10
8
0, -1, 1, -1, 0, 1, -2, 2, -1, -1, 3, -4, 3, 0, -4, 7, -7, 3, 4, -11, 14, -10, -1, 15, -25, 24, -9, -16, 40, -49, 33, 7, -56, 89, -82, 26, 63, -145, 171, -108, -37, 208, -316, 279, -71, -245, 524, -595, 350, 174, -769, 1119, -945, 176, 943, -1888, 2064, -1121, -767, 2831, -3952
OFFSET
0,7
COMMENTS
Generating floretion is "jesright".
Pisano period lengths: 1, 7, 13, 14, 24, 91, 48, 28, 39, 168, 120, 182, 183, 336, 312, 56, 288, 273, 180, 168,.. (which differs from A104217 for example at index 23). - R. J. Mathar, Aug 10 2012
FORMULA
a(n) = -A247917(n-1).
Recurrence: a(n+3) = a(n) - a(n+2); a(0) = 0, a(1) = -1, a(2) = 1.
a(n+1) - a(n) = ((-1)^(n+1))*a(n+5).
a(n) = ((-1)^n)*A050935(n+1) = ((-1)^n)*A078013(n+2).
a(n) = A104771(n) - A104770(n).
MATHEMATICA
LinearRecurrence[{-1, 0, 1}, {0, -1, 1}, 61] (* or *)
CoefficientList[Series[-x/(1 + x - x^3), {x, 0, 60}], x] (* Michael De Vlieger, Jul 02 2021 *)
PROG
(PARI) a(n)=([0, 1, 0; 0, 0, 1; 1, 0, -1]^n*[0; -1; 1])[1, 1] \\ Charles R Greathouse IV, Jun 11 2015
CROSSREFS
Apart from signs, essentially the same as A050935 and A078013.
Cf. A247917 (negative).
KEYWORD
sign,easy,less
AUTHOR
Creighton Dement, Mar 24 2005
EXTENSIONS
Edited by Ralf Stephan, Apr 05 2009
STATUS
approved
Expansion of g.f. (1-x+x^2)/(1+x-x^3).
+10
3
1, -2, 3, -2, 0, 3, -5, 5, -2, -3, 8, -10, 7, 1, -11, 18, -17, 6, 12, -29, 35, -23, -6, 41, -64, 58, -17, -47, 105, -122, 75, 30, -152, 227, -197, 45, 182, -379, 424, -242, -137, 561, -803, 666, -105, -698, 1364, -1469, 771, 593, -2062, 2833, -2240, 178, 2655, -4895, 5073, -2418, -2477, 7550, -9968
OFFSET
0,2
COMMENTS
A floretion-generated sequence.
Floretion Algebra Multiplication Program, FAMP Code: Define A = + .5'i + .5'j + .5'k + .5e and B = + .5'i + .5i' + .5'ii' + .5e. Then (a(n)) = jesloop(infty)-jesfor[A*B], ForType: 1A.
FORMULA
Recurrence: a(n+3) = a(n) - a(n+2); a(0) = 1, a(1) = -2, a(2) = 3.
a(n+1) - a(n) = ((-1)^(n+1))*a(n+5); a(n) = A104769(n) + A104770(n).
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Creighton Dement, Mar 24 2005
EXTENSIONS
Edited by Ralf Stephan, Apr 05 2009
STATUS
approved

Search completed in 0.006 seconds