[go: up one dir, main page]

login
Search: a103523 -id:a103523
     Sort: relevance | references | number | modified | created      Format: long | short | data
Concatenations of pairs of primes that differ by 1000000.
+0
2
31000003, 371000037, 1511000151, 1931000193, 1991000199, 2111000211, 3131000313, 3671000367, 3971000397, 4091000409, 4571000457, 5411000541, 5471000547, 5771000577, 6191000619, 6911000691, 8291000829, 8591000859
OFFSET
1,1
COMMENTS
After the first element, 31000003, which is prime, integers in this sequence can never be prime, as they are all multiples of 3. They can be semiprimes, as is the case for 3671000367 = 3 x 1223666789, 4571000457 = 3 x 1523666819, 5411000541 = 3 x 1803666847, 9071000907 = 3 x 3023666969.
FORMULA
a(n) = Concatenate(P, P+1000000) iff P prime and P+1000000 prime.
EXAMPLE
Prime(47) = 211 and 211 + 1000000 = Prime(78515) = 1000211. Concatenating these two primes gives 2111000211 = 3^4 * 17^2 * 31 * 2909.
KEYWORD
base,easy,nonn
AUTHOR
Jonathan Vos Post, Mar 23 2005
STATUS
approved
Concatenations of pairs of primes that differ by 10^12.
+0
1
611000000000061, 1631000000000163, 1931000000000193, 2111000000000211, 2711000000000271, 3311000000000331, 5471000000000547, 6611000000000661, 7511000000000751, 7871000000000787, 9971000000000997, 10511000000001051
OFFSET
1,1
COMMENTS
Integers in this sequence can never be prime, as they are all multiples of 3. They can be semiprimes, as is the case for Prime(177) concatenated with Prime(37607912056) = 10511000000001051 = 3 * 3503666666667017.
LINKS
FORMULA
a(n) = Concatenate(P, P+10^12) iff P prime and P+10^12 prime.
EXAMPLE
61 is prime, specifically prime(18) and 61 + 10^12 is prime, specifically prime(7607912020), so their concatenation is in this sequence: 611000000000061. The concatenation is not itself prime, as it equals 3 * 7 * 23 * 1265010351967.
MATHEMATICA
#*10^13+10^12+#&/@Select[Prime[Range[200]], PrimeQ[#+10^12]&] (* Harvey P. Dale, Jan 18 2021 *)
KEYWORD
base,easy,nonn
AUTHOR
Jonathan Vos Post, Mar 29 2005
STATUS
approved
Concatenations of pairs of primes that differ by 10^9.
+0
2
71000000007, 971000000097, 1031000000103, 1811000000181, 2231000000223, 2411000000241, 2711000000271, 3491000000349, 4091000000409, 4331000000433, 4391000000439, 6071000000607, 6131000000613, 7871000000787, 8291000000829
OFFSET
1,1
COMMENTS
Integers in this sequence can never be prime, as they are all multiples of 3. They can be semiprimes, as is the case for Prime(42) concatenated with Prime(50847544) = 1811000000181 = 3 x 603666666727.
LINKS
FORMULA
a(n) = Concatenate(P, P+1000000000) iff P prime and P+1000000000 prime.
EXAMPLE
181 is prime, 181+10^9 = 1000000181 is prime, so their concatenation is an element of this sequence: 1811000000181. Coincidentally, prime(181)+10^9 = 1000001087 is also prime.
MATHEMATICA
FromDigits[Join[IntegerDigits[#], IntegerDigits[#+10^9]]]&/@Select[Prime[ Range[ 200]], PrimeQ[ #+ 10^9]&] (* Harvey P. Dale, May 14 2022 *)
KEYWORD
base,easy,nonn
AUTHOR
Jonathan Vos Post, Mar 25 2005
STATUS
approved
Concatenations of pairs of primes that differ by 1000.
+0
3
131013, 191019, 311031, 611061, 971097, 1031103, 1091109, 1511151, 1631163, 1811181, 1931193, 2231223, 2291229, 2771277, 2831283, 3071307, 3671367, 3731373, 4091409, 4331433, 4391439, 4871487, 4991499, 5231523, 5711571
OFFSET
1,1
COMMENTS
All terms are multiples of 3.
FORMULA
a(n) = Concatenate(P, P+1000) iff P prime and P+1000 prime.
EXAMPLE
1811181 is in this sequence because 181 is prime, 181+1000 = 1181 is prime and those two primes are concatenated.
MATHEMATICA
10001#+1000&/@Select[Prime[Range[150]], PrimeQ[#+1000]&] (* Harvey P. Dale, Sep 01 2017 *)
KEYWORD
base,easy,nonn
AUTHOR
Jonathan Vos Post, Mar 22 2005
STATUS
approved

Search completed in 0.008 seconds