[go: up one dir, main page]

login
Search: a103262 -id:a103262
     Sort: relevance | references | number | modified | created      Format: long | short | data
McKay-Thompson series of class 18d for the Monster group.
+10
3
1, 4, 10, 20, 35, 60, 100, 164, 261, 400, 600, 884, 1291, 1864, 2656, 3740, 5205, 7184, 9842, 13388, 18082, 24244, 32300, 42784, 56378, 73928, 96466, 125284, 161981, 208568, 267524, 341880, 435343, 552424, 698666, 880848, 1107229, 1387804, 1734624, 2162248
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (chi(-x^3) / chi(-x))^4 in powers of x where chi() is a Ramanujan theta function.
Expansion of q^(1/3) * c(q) * b(q^2) / (b(q) * c(q^2)) in powers of q where b(), c() are cubic AGM theta functions.
Expansion of q^(1/3) * (eta(q^2) * eta(q^3) / (eta(q) * eta(q^6)))^4 in powers of q.
Given g.f. A(x), then B(x) = A(x^3) / x satisfies 0 = f(B(x), B(x^2)) where f(u, v) = 8 * (u * v)^2 - (1 + u * v) * (u^2 - v) * (v^2 - u).
Given g.f. A(x), then B(x) = A(x^3) / x satisfies 0 = f(B(x), B(x^2)) where f(u, v) = 9 * (u * v)^2 - (u - v^2 + u^2*v) * (v - u^2 + u*v^2).
Given g.f. A(x), then B(x) = A(x^3) / x satisfies 0 = f(B(x), B(x^2), B(x^4)) where f(u, v, w) = 8 * u * v * w - (u^2 - v) * (w^2 - v).
Given g.f. A(x), then B(x) = A(x^3) / x satisfies 0 = f(B(x), B(x^5)) where f(u, v) = u*v * (1 + 25 * u*v + u^2*v^2)^2 - (u^3 + v^3 + 10 * u*v * (1 + u*v))^2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (54 t)) = f(t) where q = exp(2 Pi i t).
Convolution square of A103262. Convolution fourth power of A003105.
a(n) ~ exp(2*Pi*sqrt(2*n)/3) / (2^(3/4) * sqrt(3) * n^(3/4)). - Vaclav Kotesovec, Sep 10 2015
EXAMPLE
1 + 4*x + 10*x^2 + 20*x^3 + 35*x^4 + 60*x^5 + 100*x^6 + 164*x^7 + ...
T18d = 1/q + 4*q^2 + 10*q^5 + 20*q^8 + 35*q^11 + 60*q^14 + 100*q^17 + ...
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[((1+x^(3*k-1))*(1+x^(3*k-2)))^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 10 2015 *)
QP = QPochhammer; s = (QP[q^2]*(QP[q^3]/(QP[q]*QP[q^6])))^4 + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Nov 30 2015, adapted from PARI *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^3 + A) / (eta(x + A) * eta(x^6 + A)))^4, n))} /* Michael Somos, Mar 04 2012 */
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 27 2000
STATUS
approved
a(n) = [x^n] Product_{k>=1} ((1 + x^k)/(1 + x^(3*k)))^n.
+10
3
1, 1, 3, 10, 35, 131, 498, 1919, 7459, 29170, 114653, 452552, 1792754, 7124040, 28386081, 113372690, 453743907, 1819317153, 7306575042, 29386858821, 118348662525, 477188876405, 1926137365804, 7782398551661, 31472648050930, 127384123318906, 515978637418884
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Schur's Partition Theorem
FORMULA
a(n) = [x^n] Product_{k>=1} 1/((1 - x^(6*k-1))*(1 - x^(6*k-5)))^n.
a(n) ~ c * d^n / sqrt(n), where d = 4.129321588075726742506... and c = 0.25764349816429874321... - Vaclav Kotesovec, May 18 2018
MATHEMATICA
Table[SeriesCoefficient[Product[((1 + x^k)/(1 + x^(3 k)))^n, {k, 1, n}], {x, 0, n}], {n, 0, 26}]
Table[SeriesCoefficient[Product[1/((1 - x^(6 k - 1)) (1 - x^(6 k - 5)))^n, {k, 1, n}], {x, 0, n}], {n, 0, 26}]
(* Calculation of constants {d, c}: *) With[{k = 3}, {1/r, Sqrt[QPochhammer[-1, (r*s)^k] / (2*Pi*(r^2*s*Derivative[0, 2][QPochhammer][-1, r*s] - k^2*(r*s)^(2*k) * Derivative[0, 2][QPochhammer][-1, (r*s)^k] - k*(1 + k)*(r*s)^k * Derivative[0, 1][QPochhammer][-1, (r*s)^k]))]} /. FindRoot[{s == QPochhammer[-1, r*s]/QPochhammer[-1, (r*s)^k], QPochhammer[-1, (r*s)^k] + k*(r*s)^k*Derivative[0, 1][QPochhammer][-1, (r*s)^k] == r*Derivative[0, 1][QPochhammer][-1, r*s]}, {r, 1/4}, {s, 2}, WorkingPrecision -> 70]] (* Vaclav Kotesovec, Jan 17 2024 *)
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 06 2017
STATUS
approved

Search completed in 0.012 seconds