[go: up one dir, main page]

login
Search: a099353 -id:a099353
     Sort: relevance | references | number | modified | created      Format: long | short | data
From P-positions in a certain game.
+10
5
0, 1, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75
OFFSET
0,3
LINKS
A. S. Fraenkel, New games related to old and new sequences, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 4, Paper G6, 2004.
FORMULA
Let a(n) = this sequence, b(n) = A099353. Then a(n) = the smallest number not in {a(0), b(0), a(1), b(1), ..., a(n-1), b(n-1)}; b(n) = b(n-1) + a(n) - floor((a(n-1)+1)/a(n)) + 2. Apart from initial zero, this is the complement of A099353.
MAPLE
a:=proc(n) option remember: local j, t: if(n=0)then return 0: else t:=a(n-1)+1: for j from 0 to n-1 do if(t=b(j))then return t+1: elif(t<b(j))then break: fi: od: return t: fi: end:
b:=proc(n) option remember: if(n=0)then return 0: else return b(n-1) + a(n) - floor((a(n-1)+1)/a(n)) + 2: fi: end:
seq(a(n), n=0..70); # Nathaniel Johnston, Apr 28 2011
MATHEMATICA
a[n_] := a[n] = Module[{j, t}, If[n == 0, 0, t = a[n - 1] + 1; For[j = 0, j <= n - 1, j++, Which[t == b[j], Return[t + 1], t < b[j], Break[]]]; t]];
b[n_] := b[n] = If[n == 0, 0, b[n - 1] + a[n] - Floor[(a[n - 1] + 1)/a[n]] + 2];
Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Mar 10 2023, after Nathaniel Johnston *)
CROSSREFS
Cf. A099353.
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 16 2004
STATUS
approved
Sum of the number of e-divisors of all numbers from 1 up to n.
+10
5
1, 2, 3, 5, 6, 7, 8, 10, 12, 13, 14, 16, 17, 18, 19, 22, 23, 25, 26, 28, 29, 30, 31, 33, 35, 36, 38, 40, 41, 42, 43, 45, 46, 47, 48, 52, 53, 54, 55, 57, 58, 59, 60, 62, 64, 65, 66, 69, 71, 73, 74, 76, 77, 79, 80, 82, 83, 84, 85, 87, 88, 89, 91, 95, 96, 97, 98, 100, 101, 102, 103, 107
OFFSET
1,2
LINKS
FORMULA
a(n) ~ c * n, where c = A327837. - Amiram Eldar, Dec 08 2022
MATHEMATICA
f[p_, e_] := DivisorSigma[0, e]; ediv[n_] := Times @@ (f @@@ FactorInteger[n]); Accumulate[Array[ediv, 100]] (* Amiram Eldar, Jun 23 2019 *)
PROG
(PARI) d(n) = {my(f = factor(n)); prod(i = 1, #f~, numdiv(f[i, 2])); }
lista(nmax) = {my(s = 0); for(n = 1, nmax, s += d(n); print1(s, ", ")); } \\ Amiram Eldar, Dec 08 2022
CROSSREFS
Equals partial sums of A049419.
Different from A013936 (which does not contain 52).
KEYWORD
nonn
AUTHOR
STATUS
approved

Search completed in 0.008 seconds