[go: up one dir, main page]

login
Search: a097837 -id:a097837
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = 7*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 7.
+10
36
2, 7, 51, 364, 2599, 18557, 132498, 946043, 6754799, 48229636, 344362251, 2458765393, 17555720002, 125348805407, 894997357851, 6390330310364, 45627309530399, 325781497023157, 2326097788692498, 16608466017870643, 118585359913786999, 846705985414379636
OFFSET
0,1
COMMENTS
a(n+1)/a(n) converges to (7+sqrt(53))/2 = 7.14005... = A176439.
Lim a(n)/a(n+1) as n approaches infinity = 0.1400549... = 2/(7+sqrt(53)) = (sqrt(53)-7)/2 = 1/A176439 = A176439 - 7.
From Johannes W. Meijer, Jun 12 2010: (Start)
In general sequences with recurrence a(n) = k*a(n-1)+a(n-2) with a(0)=2 and a(1)=k [and a(-1)=0] have generating function (2-k*x)/(1-k*x-x^2). If k is odd (k>=3) they satisfy a(3n+1) = b(5n), a(3n+2)=b(5*n+3), a(3n+3)=2*b(5n+4) where b(n) is the sequence of numerators of continued fraction convergents to sqrt(k^2+4). [If k is even then a(n)/2, for n>=1, is the sequence of numerators of continued fraction convergents to sqrt(k^2/4+1).]
For the sequence given above k=7 which implies that it is associated with A041090.
For a similar statement about sequences with recurrence a(n) = k*a(n-1)+a(n-2) but with a(0)=1 [and a(-1)=0] see A054413; a sequence that is associated with A041091.
For more information follow the Khovanova link and see A087130, A140455 and A178765.
(End)
FORMULA
a(n) = ((7+sqrt(53))/2)^n + ((7-sqrt(53))/2)^n.
E.g.f. : 2exp(7x/2)cosh(sqrt(53)x/2); a(n)=2^(1-n)sum{k=0..floor(n/2), C(n, 2k)53^k7^(n-2k)}. a(n)=2T(n, 7i/2)(-i)^n with T(n, x) Chebyshev's polynomials of the first kind (see A053120) and i^2=-1. - Paul Barry, Nov 15 2003
G.f.: (2-7x)/(1-7x-x^2). - Philippe Deléham, Nov 16 2008
From Johannes W. Meijer, Jun 12 2010: (Start)
a(2n+1) = 7*A097837(n), a(2n) = A099368(n).
a(3n+1) = A041090(5n), a(3n+2) = A041090(5*n+3), a(3n+3) = 2*A041090(5n+4).
Limit(a(n+k)/a(k), k=infinity) = (A086902(n) + A054413(n-1)*sqrt(53))/2.
Limit(A086902(n)/A054413(n-1), n=infinity) = sqrt(53). (End)
EXAMPLE
a(4) = 7*a(3) + a(2) = 7*364 + 51 = 2599.
MATHEMATICA
RecurrenceTable[{a[0] == 2, a[1] == 7, a[n] == 7 a[n-1] + a[n-2]}, a, {n, 30}] (* Vincenzo Librandi, Sep 19 2016 *)
LinearRecurrence[{7, 1}, {2, 7}, 30] (* Harvey P. Dale, May 25 2023 *)
PROG
(PARI) a(n)=([0, 1; 1, 7]^n*[2; 7])[1, 1] \\ Charles R Greathouse IV, Apr 06 2016
(Magma) I:=[2, 7]; [n le 2 select I[n] else 7*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 19 2016
CROSSREFS
Cf. A000032 (k=1), A006497 (k=3), A087130 (k=5), A086902 (k=7), A087798 (k=9), A001946 (k=11), A088316 (k=13), A090301 (k=15), A090306 (k=17). - Johannes W. Meijer, Jun 12 2010
KEYWORD
nonn,easy
AUTHOR
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Sep 18 2003
STATUS
approved
Chebyshev polynomials S(n,83) + S(n-1,83) with Diophantine property.
+10
6
1, 84, 6971, 578509, 48009276, 3984191399, 330639876841, 27439125586404, 2277116783794691, 188973253929372949, 15682502959354160076, 1301458772372465913359, 108005395603955316648721
OFFSET
0,2
COMMENTS
(9*a(n))^2 - 85*b(n)^2 = -4 with b(n)=A097841(n) give all positive solutions of this Pell equation.
LINKS
Tanya Khovanova, Recursive Sequences
Giovanni Lucca, Integer Sequences and Circle Chains Inside a Hyperbola, Forum Geometricorum (2019) Vol. 19, 11-16.
H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
FORMULA
a(n) = S(n, 83) + S(n-1, 83) = S(2*n, sqrt(85)), with S(n, x) = U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x) = 0 = U(-1, x). S(n, 83) = A097839(n).
a(n) = (-2/9)*i*((-1)^n)*T(2*n+1, 9*i/2) with the imaginary unit i and Chebyshev's polynomials of the first kind. See the T-triangle A053120.
G.f.: (1+x)/(1 - 83*x + x^2).
a(n) = 83*a(n-1) - a(n-2) for n > 1; a(0)=1, a(1)=84. - Philippe Deléham, Nov 18 2008
From Peter Bala, Aug 26 2022: (Start)
a(n) = (2/9)*(9/2 o 9/2 o ... o 9/2) (2*n+1 terms), where the binary operation o is defined on real numbers by x o y = x*sqrt(1 + y^2) + y*sqrt(1 + x^2). The operation o is commutative and associative with identity 0.
The aerated sequence (b(n))n>=1 = [1, 0, 84, 0, 6971, 0, 578509, 0, ...], with o.g.f. x*(1 + x^2)/(1 - 83*x^2 + x^4), is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -81, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047 for the connection with Chebyshev polynomials.
b(n) = 1/2*( (-1)^n - 1 )*F(n,9) + 1/9*( 1 + (-1)^(n+1) )*F(n+1,9), where F(n,x) is the n-th Fibonacci polynomial - see A168561 (but with row indexing starting at n = 1).
Exp( Sum_{n >= 1} 18*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 18*A099371(n)*x^n.
Exp( Sum_{n >= 1} (-18)*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 18*A099371(n)*(-x)^n. (End)
EXAMPLE
All positive solutions of Pell equation x^2 - 85*y^2 = -4 are (9=9*1,1), (756=9*84,82), (62739=9*6971,6805), (5206581=9*578509,564733), ...
MATHEMATICA
CoefficientList[Series[(1+x)/(1-83x+x^2), {x, 0, 20}], x] (* Michael De Vlieger, Feb 08 2017 *)
PROG
(PARI) my(x='x+O('x^20)); Vec((1+x)/(1-83*x+x^2)) \\ G. C. Greubel, Jan 13 2019
(Magma) m:=20; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1+x)/(1-83*x+x^2) )); // G. C. Greubel, Jan 13 2019
(Sage) ((1+x)/(1-83*x+x^2)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Jan 13 2019
(GAP) a:=[1, 84];; for n in [3..20] do a[n]:=83*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 13 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Sep 10 2004
STATUS
approved
Chebyshev polynomials S(n,27) + S(n-1,27) with Diophantine property.
+10
5
1, 28, 755, 20357, 548884, 14799511, 399037913, 10759224140, 290100013867, 7821941150269, 210902311043396, 5686540457021423, 153325690028535025, 4134107090313424252, 111467565748433919779, 3005490168117402409781
OFFSET
0,2
COMMENTS
(5*a(n))^2 - 29*b(n)^2 = -4 with b(n) = A097835(n) give all positive solutions of this Pell equation.
LINKS
Indranil Ghosh, Table of n, a(n) for n = 0..697 (terms 0..200 from Vincenzo Librandi)
Tanya Khovanova, Recursive Sequences
Giovanni Lucca, Integer Sequences and Circle Chains Inside a Hyperbola, Forum Geometricorum (2019) Vol. 19, 11-16.
H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
FORMULA
a(n) = S(n, 27) + S(n-1, 27) = S(2*n, sqrt(29)), with S(n, x)=U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x) = 0 = U(-1, x). S(n, 27)=A097781(n).
a(n) = (-2/5)*i*((-1)^n)*T(2*n+1, 5*i/2) with the imaginary unit i and Chebyshev's polynomials of the first kind. See the T-triangle A053120.
G.f.: (1+x)/(1-27*x+x^2).
a(n) = - a(-1-n) for all n in Z. - Michael Somos, Nov 01 2008
From Peter Bala, Aug 26 2022: (Start)
a(n) = (2/5)*(5/2 o 5/2 o ... o 5/2) (2*n+1 terms), where the binary operation o is defined on real numbers by x o y = x*sqrt(1 + y^2) + y*sqrt(1 + x^2). The operation o is commutative and associative with identity 0.
The aerated sequence (b(n))n>=1 = [1, 0, 28, 0, 755, 0, 20357, 0, ...], with o.g.f. x*(1 + x^2)/(1 - 27*x^2 + x^4), is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -25, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047 for the connection with Chebyshev polynomials.
b(n) = (1/2)*( (-1)^n - 1 )*F(n,5) + (1/5)*( 1 + (-1)^(n+1) )*F(n+1,5), where F(n,x) is the n-th Fibonacci polynomial - see A168561 (but with row indexing starting at n = 1).
Exp( Sum_{n >= 1} 10*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 10*A052918(n)*x^n.
Exp( Sum_{n >= 1} (-10)*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 10*A052918(n)*(-x)^n.
(End)
EXAMPLE
All positive solutions of Pell equation x^2 - 29*y^2 = -4 are
(5=5*1,1), (140=5*28,26), (3775=5*755,701), (101785=5*20357,18901), ...
MATHEMATICA
a[n_] := -2/5*I*(-1)^n*ChebyshevT[2*n + 1, 5*I/2]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Jun 21 2013, from 2nd formula *)
PROG
(PARI) {a(n) = (-1)^n * subst(2 * I / 5 * poltchebi(2*n + 1), 'x, -5/2 * I)}; /* Michael Somos, Nov 04 2008 */
CROSSREFS
A087130(2*n + 1) = 5 * a(n). - Michael Somos, Nov 01 2008
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Sep 10 2004
STATUS
approved
Chebyshev polynomials S(n,51).
+10
5
1, 51, 2600, 132549, 6757399, 344494800, 17562477401, 895341852651, 45644872007800, 2326993130545149, 118631004785794799, 6047854250944989600, 308321935793408674801, 15718370871212897425251, 801328592496064360013000
OFFSET
0,2
COMMENTS
Used for all positive integer solutions of Pell equation x^2 - 53*y^2 = -4. See A097837 with A097838.
a(n-1), with a(-1) := 0, and b(n) := A099368(n) give the proper and improper nonnegative solutions of the Pell equation b(n)^2 - 53*(7*a(n-1))^2 = +4, n >= 0. - Wolfdieter Lang, Jun 27 2013
LINKS
Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
R. Flórez, R. A. Higuita, and A. Mukherjee, Alternating Sums in the Hosoya Polynomial Triangle, Article 14.9.5 Journal of Integer Sequences, Vol. 17 (2014).
Tanya Khovanova, Recursive Sequences
FORMULA
a(n) = S(n, 51)=U(n, 51/2)= S(2*n+1, sqrt(53))/sqrt(53) with S(n, x) = U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x)= 0 = U(-1, x).
a(n) = 51*a(n-1) - a(n-2), n >= 1, a(-1)=0, a(0)=1, a(1)=51.
a(n) = (ap^(n+1) - am^(n+1))/(ap-am) with ap := (51+7*sqrt(53))/2 and am := (51-7*sqrt(53))/2 = 1/ap.
G.f.: 1/(1-51*x+x^2).
MATHEMATICA
LinearRecurrence[{51, -1}, {1, 51}, 30] (* G. C. Greubel, Jan 12 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(1/(1-51*x+x^2)) \\ G. C. Greubel, Jan 12 2019
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( 1/(1-51*x+x^2) )); // G. C. Greubel, Jan 12 2019
(Sage) (1/(1-51*x+x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 12 2019
(GAP) a:=[1, 51];; for n in [2..30] do a[n]:=51*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 12 2019
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Sep 10 2004
STATUS
approved
First differences of Chebyshev polynomials S(n,51) = A097836(n) with Diophantine property.
+10
5
1, 50, 2549, 129949, 6624850, 337737401, 17217982601, 877779375250, 44749530155149, 2281348258537349, 116304011655249650, 5929223246159194801, 302274081542463685201, 15410048935419488750450, 785610221624851462587749
OFFSET
0,2
COMMENTS
(7*b(n))^2 - 53*a(n)^2 = -4 with b(n)=A097837(n) give all positive solutions of this Pell equation.
FORMULA
a(n) = ((-1)^n)*S(2*n, 7*i) with the imaginary unit i and the S(n, x) = U(n, x/2) Chebyshev polynomials.
G.f.: (1-x)/(1 - 51*x + x^2).
a(n) = S(n, 51) - S(n-1, 51) = T(2*n+1, sqrt(53)/2)/(sqrt(53)/2), with S(n, x) = U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x)= 0 = U(-1, x) and T(n, x) Chebyshev's polynomials of the first kind, A053120.
a(n) = 51*a(n-1) - a(n-2), a(0)=1, a(1)=50. - Philippe Deléham, Nov 18 2008
EXAMPLE
All positive solutions of Pell equation x^2 - 53*y^2 = -4 are (7=7*1,1), (364=7*52,50), (18557=7*2651,2549), (946043=7*135149,129949), ...
MATHEMATICA
LinearRecurrence[{51, -1}, {1, 50}, 20] (* G. C. Greubel, Jan 13 2019 *)
PROG
(PARI) my(x='x+O('x^20)); Vec((1-x)/(1-51*x+x^2)) \\ G. C. Greubel, Jan 13 2019
(Magma) m:=20; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-x)/(1-51*x+x^2) )); // G. C. Greubel, Jan 13 2019
(Sage) ((1-x)/(1-51*x+x^2)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Jan 13 2019
(GAP) a:=[1, 50];; for n in [3..20] do a[n]:=51*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 13 2019
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Sep 10 2004
STATUS
approved

Search completed in 0.008 seconds