[go: up one dir, main page]

login
Search: a094000 -id:a094000
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of zero-one matrices with n ones and no zero rows or columns and with distinct rows, up to permutation of rows.
+10
28
1, 1, 2, 7, 28, 134, 729, 4408, 29256, 210710, 1633107, 13528646, 119117240, 1109528752, 10889570768, 112226155225, 1210829041710, 13640416024410, 160069458445202, 1952602490538038, 24712910192430620, 323964329622503527, 4391974577299578248, 61488854148194151940
OFFSET
0,3
COMMENTS
Also the number of labeled hypergraphs spanning an initial interval of positive integers with edge-sizes summing to n. - Gus Wiseman, Dec 18 2018
LINKS
P. J. Cameron, T. Prellberg and D. Stark, Asymptotics for incidence matrix classes , arXiv:math/0510155 [math.CO], 2005-2006.
M. Klazar, Extremal problems for ordered hypergraphs, arXiv:math/0305048 [math.CO], 2003.
EXAMPLE
From Gus Wiseman, Dec 18 2018: (Start)
The a(3) = 7 edge-sets:
{{1,2,3}}
{{1},{1,2}}
{{2},{1,2}}
{{1},{2,3}}
{{2},{1,3}}
{{3},{1,2}}
{{1},{2},{3}}
Inequivalent representatives of the a(4) = 28 0-1 matrices:
[1111]
.
[100][1000][010][0100][001][0010][0001][110][110][1100][101][1010][1001]
[111][0111][111][1011][111][1101][1110][101][011][0011][011][0101][0110]
.
[10][100][100][1000][100][100][1000][1000][010][010][0100][0100][0010]
[01][010][010][0100][001][001][0010][0001][001][001][0010][0001][0001]
[11][101][011][0011][110][011][0101][0110][110][101][1001][1010][1100]
.
[1000]
[0100]
[0010]
[0001]
(End)
MAPLE
b:= proc(n, i, k) b(n, i, k):=`if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j,
min(n-i*j, i-1), k)*binomial(binomial(k, i), j), j=0..n/i)))
end:
a:= n-> add(add(b(n$2, i)*(-1)^(k-i)*binomial(k, i), i=0..k), k=0..n):
seq(a(n), n=0..23); # Alois P. Heinz, Sep 13 2019
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, Min[n - i*j, i - 1], k]*Binomial[Binomial[k, i], j], {j, 0, n/i}]]];
a[n_] := Sum[Sum[b[n, n, i]*(-1)^(k-i)*Binomial[k, i], {i, 0, k}], {k, 0, n}];
a /@ Range[0, 23] (* Jean-François Alcover, Feb 25 2020, after Alois P. Heinz *)
CROSSREFS
Binary matrices with distinct rows and columns, various versions: A059202, A088309, A088310, A088616, A089673, A089674, A093466, A094000, A094223, A116532, A116539, A181230, A259763
Row sums of A326914 and of A326962.
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Mar 27 2006
EXTENSIONS
a(0)=1 prepended and more terms added by Alois P. Heinz, Sep 13 2019
STATUS
approved
Square array T(m,n) giving the number of m X n (0,1)-matrices with pairwise distinct rows and pairwise distinct columns.
+10
18
2, 2, 2, 0, 10, 0, 0, 24, 24, 0, 0, 24, 264, 24, 0, 0, 0, 1608, 1608, 0, 0, 0, 0, 6720, 33864, 6720, 0, 0, 0, 0, 20160, 483840, 483840, 20160, 0, 0, 0, 0, 40320, 5644800, 19158720, 5644800, 40320, 0, 0, 0, 0, 40320, 57415680, 595506240, 595506240, 57415680, 40320
OFFSET
1,1
COMMENTS
Table starts
.2..2.....0...........0...............0..................0
.2.10....24..........24...............0..................0
.0.24...264........1608............6720..............20160
.0.24..1608.......33864..........483840............5644800
.0..0..6720......483840........19158720..........595506240
.0..0.20160.....5644800.......595506240........44680224960
.0..0.40320....57415680.....16388749440......2881362718080
.0..0.40320...518676480....418910083200....172145618789760
.0..0.....0..4151347200..10136835072000...9841604944066560
.0..0.....0.29059430400.233811422208000.546156941728204800
FORMULA
T(m,n) = Sum_{i=0..n} Sum_{j=0..m} stirling1(n,i) * stirling1(m,j) * 2^(i*j) = n! * Sum_{j=0..m} stirling1(m,j) * binomial(2^j,n) = m! * Sum_{i=0..n} stirling1(n,i) * binomial(2^i,m). - Max Alekseyev, Jun 18 2016
T(m,n) = A059084(m,n) * n!.
CROSSREFS
Cf. A088310 (diagonal), A181231, A181232, A181233 (subdiagonals).
Binary matrices with distinct rows and columns, various versions: A059202, A088309, A088310, A088616, A089673, A089674, A093466, A094000, A094223, A116532, A116539, A181230, A259763
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Oct 10 2010
STATUS
approved
Triangle T(n,m) of numbers of m-block T_0-covers of a labeled n-set, m = 0..2^n - 1.
+10
17
1, 0, 1, 0, 0, 3, 1, 0, 0, 3, 29, 35, 21, 7, 1, 0, 0, 0, 140, 1015, 2793, 4935, 6425, 6435, 5005, 3003, 1365, 455, 105, 15, 1, 0, 0, 0, 420, 13965, 126651, 661801, 2533135, 7792200, 20085000, 44307120, 84651840, 141113700, 206251500, 265182300
OFFSET
0,6
COMMENTS
A cover of a set is a T_0-cover if for every two distinct points of the set there exists a member (block) of the cover containing one but not the other point.
Also, T(n,m) is the number of n X m (0,1)-matrices with pairwise distinct nonzero columns and pairwise distinct nonzero rows, up to permutation of columns.
LINKS
Robert Israel, Table of n, a(n) for n = 0..4094 (rows 0 to 11, flattened).
FORMULA
T(n, m) = (1/m!)*Sum_{1..m + 1} stirling1(m + 1, i)*[2^(i - 1) - 1]_n, where [k]_n := k*(k - 1)*...*(k - n + 1), [k]_0 = 1.
E.g.f: Sum((1+x)^(2^n-1)*log(1+y)^n/n!, n=0..infinity)/(1+y). - Vladeta Jovovic, May 19 2004
Also T(n, m) = Sum_{i=0..n} Stirling1(n+1, i+1)*binomial(2^i-1, m). - Vladeta Jovovic, Jun 04 2004
T(n,m) = A181230(n,m)/m! - n*T(n-1,m) - T(n,m-1) - n*T(n-1,m-1). - Max Alekseyev, Dec 11 2017
EXAMPLE
[1],
[0,1],
[0,0,3,1],
[0,0,3,29,35,21,7,1],
...
There are 35 4-block T_0-covers of a labeled 3-set.
MAPLE
with(combinat): for n from 0 to 10 do for m from 0 to 2^n-1 do printf(`%d, `, (1/m!)*sum(stirling1(m+1, i)*product(2^(i-1)-1-j, j=0..n-1), i=1..m+1)) od: od:
MATHEMATICA
T[n_, m_] = Sum[ StirlingS1[n + 1, i + 1]*Binomial[2^i - 1, m], {i, 0, n}]; Table[T[n, m], {n, 0, 5}, {m, 0, 2^n - 1}] (* G. C. Greubel, Dec 28 2016 *)
CROSSREFS
Cf. A059201 (row sums), A059203 (column sums), A094000 (main diagonal).
Binary matrices with distinct rows and columns, various versions: A059202, A088309, A088310, A088616, A089673, A089674, A093466, A094000, A094223, A116532, A116539, A181230, A259763
KEYWORD
easy,nonn,tabf
AUTHOR
Vladeta Jovovic, Goran Kilibarda, Jan 18 2001
EXTENSIONS
More terms from James A. Sellers, Jan 24 2001
STATUS
approved
Number of n X n (0,1)-matrices with all rows distinct and all columns distinct.
+10
17
1, 2, 10, 264, 33864, 19158720, 44680224960, 413586858182400, 14960200449325582080, 2109063823453947981680640, 1162864344149083760773678387200, 2520991223487759548686737154649702400, 21598422878151131130336454273775859841843200, 734233037731110118818452425552296701963294284185600
OFFSET
0,2
LINKS
FORMULA
a(n) = n! * Sum_{k=0..n} Stirling1(n, k)*binomial(2^k, n). - Vladeta Jovovic, Nov 07 2003
a(n) = Sum_{i=0..n} Sum_{j=0..n} stirling1(n, i) * stirling1(n, j) * 2^(i*j). - Max Alekseyev, Nov 07 2003
a(n) ~ 2^(n^2). - Vaclav Kotesovec, Jul 02 2016
a(n) = A181230(n,n).
EXAMPLE
a(2) = 10: 00/01, 00/10, 01/00, 01/10, 01/11, 10/00, 10/01, 10/11, 11/01, 11/10.
MATHEMATICA
Table[n!*Sum[StirlingS1[n, k]*Binomial[2^k, n], {k, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Jul 02 2016 *)
PROG
(Magma)
A088310:= func< n | Factorial(n)*(&+[Binomial(2^k, n)*StirlingFirst(n, k): k in [0..n]]) >;
[A088310(n): n in [0..30]]; // G. C. Greubel, Dec 14 2022
(SageMath)
@CachedFunction
def A088310(n): return (-1)^n*factorial(n)*sum((-1)^k*binomial(2^k, n)*stirling_number1(n, k) for k in (0..n))
[A088310(n) for n in range(31)] # G. C. Greubel, Dec 14 2022
CROSSREFS
Binary matrices with distinct rows and columns, various versions: A059202, A088309, A088310, A088616, A089673, A089674, A093466, A094000, A094223, A116532, A116539, A181230, A259763
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 07 2003
EXTENSIONS
Suggested by Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 06 2003
a(0)-a(5) from W. Edwin Clark, Nov 07 2003
STATUS
approved
Number of singular n X n rational {0,1}-matrices with no zero rows or columns and with all rows distinct, up to permutation of rows.
+10
17
0, 0, 3, 285, 50820, 23551920, 31898503077, 134251404794199
OFFSET
1,3
FORMULA
a(n) = A054780(n) - A088389(n).
CROSSREFS
Binary matrices with distinct rows and columns, various versions: A059202, A088309, A088310, A088616, A089673, A089674, A093466, A094000, A094223, A116532, A116539, A181230, A259763
KEYWORD
more,nonn
AUTHOR
Vladeta Jovovic, Apr 03 2006
STATUS
approved
Number of equivalence classes of n X n (0,1)-matrices with all rows distinct and all columns distinct.
+10
15
1, 2, 5, 44, 1411, 159656, 62055868, 82060884560, 371036717493194, 5812014504668066528, 320454239459072905856944, 63156145369562679089674952768, 45090502574837184532027563736271152, 117910805393665959622047902193019284914432, 1139353529410754170844431642119963019965901238144
OFFSET
0,2
COMMENTS
Two such matrices are equivalent if they differ just by a permutation of the rows.
LINKS
G. Kilibarda and V. Jovovic, Enumeration of some classes of T_0-hypergraphs, arXiv:1411.4187 [math.CO], 2014.
FORMULA
a(n) = Sum_{k=0..n} Stirling1(n, k)*binomial(2^k, n). - Vladeta Jovovic, Nov 07 2003
a(n) = A088310(n) / n!.
EXAMPLE
a(2) = 5: 00/01, 00/10, 01/10, 01/11, 10/11.
MATHEMATICA
A088309[n_]:= A088309[n]=Sum[Binomial[2^j, n]*StirlingS1[n, j], {j, 0, n}];
Table[A088309[n], {n, 0, 30}] (* G. C. Greubel, Dec 15 2022 *)
PROG
(Magma)
A088309:= func< n | (&+[Binomial(2^k, n)*StirlingFirst(n, k): k in [0..n]]) >;
[A088309(n): n in [0..30]]; // G. C. Greubel, Dec 15 2022
(SageMath)
@CachedFunction
def A088309(n): return (-1)^n*sum((-1)^k*binomial(2^k, n)*stirling_number1(n, k) for k in (0..n))
[A088309(n) for n in range(31)] # G. C. Greubel, Dec 15 2022
(PARI) a(n) = sum(k=0, n, stirling(n, k, 1)*binomial(2^k, n)); \\ Michel Marcus, Dec 16 2022
CROSSREFS
Main diagonal of A059084.
Binary matrices with distinct rows and columns, various versions: A059202, this sequence, A088310, A088616, A089673, A089674, A093466, A094000, A094223, A116532, A116539, A181230, A259763.
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 07 2003
EXTENSIONS
Suggested by Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 06 2003
a(0)-a(5) from W. Edwin Clark, Nov 07 2003
STATUS
approved
Triangle read by rows: T[n,k] = number of n X n binary matrices with k=0...n^2 ones, distinct up to cyclic shifts of rows and columns; reflection through any vertical or horizontal axis; and reflection through the main diagonal. Also, quasi-n-ominoes on a torus divided into a k X k grid.
+10
14
1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 4, 5, 5, 4, 2, 1, 1, 1, 1, 5, 10, 33, 53, 101, 122, 153, 122, 101, 53, 33, 10, 5, 1, 1, 1, 1, 5, 19, 88, 309, 975, 2537, 5637, 10510, 16740, 22734, 26500, 26500, 22734, 16740, 10510, 5637, 2537, 975, 309, 88, 19, 5, 1, 1
OFFSET
1,5
EXAMPLE
[1,1], [1,1,2,1,1], [1,1,2,4,5,5,4,2,1,1] (the last block giving the numbers of 3 X 3 binary matrices with k=0...9 ones, distinct up to the transformations listed above.
CROSSREFS
Binary matrices with distinct rows and columns, various versions: A059202, A088309, A088310, A088616, A089673, A089674, A093466, A094000, A094223, A116532, A116539, A181230, A259763
KEYWORD
nonn,tabf
AUTHOR
Jon Wild, May 21, 2004
STATUS
approved
Number of symmetric n X n (0,1)-matrices with pairwise distinct rows and columns.
+10
14
1, 2, 6, 44, 716, 24416, 1680224, 229468288, 61820527104, 32848197477760, 34502874046006912, 71850629135663531776, 297429744309497638961920, 2452504520881914016303901696, 40340635076928240671195746599936, 1324981038432182976845483456362661888, 86953044949519288083916385603832568137728
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} Stirling1(n,k) * 2^(k*(k+1)/2).
MATHEMATICA
Table[Sum[StirlingS1[n, k]*2^Binomial[k+1, 2], {k, 0, n}], {n, 0, 20}] (* G. C. Greubel, Nov 04 2018*)
PROG
(PARI) A259763(n) = sum(k=1, n, stirling(n, k, 1) * 2^(k*(k+1)/2) );
(Magma) [(&+[StirlingFirst(n, k)*2^Binomial(k+1, 2): k in [0..n]]): n in [0..20]]; // G. C. Greubel, Nov 04 2018
CROSSREFS
Binary matrices with distinct rows and columns, various versions: A059202, A088309, A088310, A088616, A089673, A089674, A093466, A094000, A094223, A116532, A116539, A181230, A259763
KEYWORD
nonn
AUTHOR
Max Alekseyev, Jul 04 2015
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Jul 12 2015
STATUS
approved
a(n) = number of n X n (0,1) matrices A such that the 2n vectors consisting of the rows and the columns of the matrix A are all distinct.
+10
13
0, 0, 24, 6840, 6568800
OFFSET
1,3
CROSSREFS
Cf. A088310.
Binary matrices with distinct rows and columns, various versions: A059202, A088309, A088310, A088616, A089673, A089674, A093466, A094000, A094223, A116532, A116539, A181230, A259763
KEYWORD
nonn,more
AUTHOR
Yuval Dekel and Vladeta Jovovic, Nov 17 2003
EXTENSIONS
What if you also ask that the two main diagonals are also distinct? - N. J. A. Sloane, Jan 03 2004.
STATUS
approved
a(n) = number of n X n (0,1) matrices A such that the 2n+2 vectors consisting of the rows and the columns of the matrix A, as well as the main diagonal and the main antidiagonal, are all distinct.
+10
13
0, 0, 0, 652, 1658784
OFFSET
1,4
CROSSREFS
Binary matrices with distinct rows and columns, various versions: A059202, A088309, A088310, A088616, A089673, A089674, A093466, A094000, A094223, A116532, A116539, A181230, A259763
KEYWORD
nonn,more
AUTHOR
Vladeta Jovovic, Jan 04 2004
STATUS
approved

Search completed in 0.014 seconds