[go: up one dir, main page]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a093131 -id:a093131
Displaying 1-7 of 7 results found. page 1
     Sort: relevance | references | number | modified | created      Format: long | short | data
A020876 a(n) = ((5+sqrt(5))/2)^n + ((5-sqrt(5))/2)^n. +10
15
2, 5, 15, 50, 175, 625, 2250, 8125, 29375, 106250, 384375, 1390625, 5031250, 18203125, 65859375, 238281250, 862109375, 3119140625, 11285156250, 40830078125, 147724609375, 534472656250, 1933740234375, 6996337890625, 25312988281250, 91583251953125 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
Number of no-leaf edge-subgraphs in Moebius ladder M_n.
LINKS
Santiago Alzate, Oscar Correa, and Rigoberto Flórez, Fibonacci identities from Jordan Identities, arXiv:2009.02639 [math.NT], 2020.
Noah Giansiracusa, Fibonacci, Golden Ratio, and Vector Bundles, Mathematics (2021) Vol. 9, Issue 4, 426.
J. P. McSorley, Counting structures in the Moebius ladder, Discrete Math., 184 (1998), 137-164.
FORMULA
Also, a(n) = (sqrt(5)*phi)^n + (sqrt(5)/phi)^n, where phi = golden ratio. - N. J. A. Sloane, Aug 08 2014
Let S(n, m)=sum(k=0, n, binomial(n, k)*fibonacci(m*k)), then for n>0 a(n)= S(2*n, 2)/S(n, 2). - Benoit Cloitre, Oct 22 2003
From R. J. Mathar, Feb 06 2010: (Start)
a(n)= 5*a(n-1) - 5*a(n-2).
G.f.: (2-5*x)/(1-5*x+5*x^2). (End)
From Johannes W. Meijer, Jul 01 2010: (Start)
Lim_{k->infinity} a(n+k)/a(k) = (A020876(n) + A093131(n)*sqrt(5))/2.
Lim_{k->infinity} A020876(n)/A093131(n) = sqrt(5). (End)
Binomial transform of A005248. - Carl Najafi, Sep 10 2011
a(n) = 2*A030191(n) - 5*A030191(n-1). - R. J. Mathar, Mar 02 2012
From Kai Wang, Dec 22, 2019: (Start)
a((2*m+1)*k)/a(k) = Sum_{i=0..m-1} (-1)^(i*(k+1))*a(2*(m-i)*k) + 5^(m*k).
A093131(m+r)*A093131(n+s) + A093131(m+s)*A093131(n+r) = (2*a(m+n+r+s) - 5^(n+s)*a(m-n)*a(r-s))/5.
a(m+r)*a(n+s) - a(m+s)*a(n+r) = 5^(n+s+1)*A093131(m-n)*A093131(r-s).
a(m+r)*a(n+s) + a(m+s)*a(n+r) = 2*a(m+n+r+s) + 5^(n+s)*a(m-n)*a(r-s).
a(m+r)*a(n+s) - 5*A093131(m+s)*A093131(n+r) = 5^(n+s)*a(m-n)*a(r-s).
a(m+r)*a(n+s) + 5*A093131(m+s)*A093131(n+r) = 2*a(m+n+r+s)+ 5^(n+s+1)*A093131(m-n)*A093131(r-s).
A093131(m-n) = (A093131(m)*a(n) - a(m)*A093131(n))/(2*5^n).
A093131(m+n) = (A093131(m)*a(n) + a(m)*A093131(n))/2.
a(n)^2 - a(n+1)*a(n-1) = -5^n.
a(n)^2 - a(n+r)*a(n-r) = -5^(n-r+1)*A093131(r)^2.
a(m)*a(n+1) - a(m+1)*a(n) = -5^(n+1)*A093131(m-n).
a(m+n) - 5^(n)*a(m-n) = 5*A093131(m)*A093131(n).
a(m+n) + 5^(n)*a(m-n) = a(m)*a(n).
a(m-n) = (a(m)*a(n) - 5*A093131(m)*A093131(n))/(2*5^n).
a(m+n) = (a(m)*a(n) + 5*A093131(m)*A093131(n))/2. (End)
E.g.f.: 2*exp(5*x/2)*cosh(sqrt(5)*x/2). - Stefano Spezia, Dec 27 2019
EXAMPLE
G.f. = 2 + 5*x + 15*x^2 + 50*x^3 + 175*x^4 + 625*x^5 + 2250*x^6 + ...
MAPLE
G:=(x, n)-> cos(x)^n+cos(3*x)^n:
seq(simplify(4^n*G(Pi/10, 2*n)), n=0..22); # Gary Detlefs, Dec 05 2010
MATHEMATICA
Table[Sum[LucasL[2*i] Binomial[n, i], {i, 0, n}], {n, 0, 50}] (* T. D. Noe, Sep 10 2011 *)
CoefficientList[Series[(2 - 5 x)/(1 - 5 x + 5 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 08 2014 *)
LinearRecurrence[{5, -5}, {2, 5}, 30] (* Harvey P. Dale, Mar 13 2016 *)
PROG
(Sage) [lucas_number2(n, 5, 5) for n in range(0, 24)] # Zerinvary Lajos, Jul 08 2008
(Magma) [Floor(((5+Sqrt(5))/2)^n+((5-Sqrt(5))/2)^n): n in [0..30]]; // Vincenzo Librandi, Aug 08 2014
CROSSREFS
Appears in A109106. - Johannes W. Meijer, Jul 01 2010
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Definition simplified by N. J. A. Sloane, Aug 08 2014
STATUS
approved
A039717 Row sums of convolution triangle A030523. +10
13
1, 4, 15, 55, 200, 725, 2625, 9500, 34375, 124375, 450000, 1628125, 5890625, 21312500, 77109375, 278984375, 1009375000, 3651953125, 13212890625, 47804687500, 172958984375, 625771484375, 2264062500000, 8191455078125 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 10 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = 3, s(2n) = 5.
With offset 0 = INVERT transform of A001792: (1, 3, 8, 20, 48, 112, ...). - Gary W. Adamson, Oct 26 2010
From Tom Copeland, Nov 09 2014: (Start)
The array belongs to a family of arrays associated to the Catalan A000108 (t=1), and Riordan, or Motzkin sums A005043 (t=0), with the o.g.f. (1-sqrt(1-4x/(1+(1-t)x)))/2 and inverse x*(1-x)/(1 + (t-1)*x*(1-x)). See A091867 for more info on this family. Here t = -4 (mod signs in the results).
Let C(x) = (1 - sqrt(1-4x))/2, an o.g.f. for the Catalan numbers A000108, with inverse Cinv(x) = x*(1-x) and P(x,t) = x/(1+t*x) with inverse P(x,-t).
O.g.f.: G(x) = x*(1-x)/(1 - 5x*(1-x)) = P(Cinv(x),-5).
Inverse O.g.f.: Ginv(x) = (1 - sqrt(1 - 4*x/(1+5x)))/2 = C(P(x,5)) (signed A026378). Cf. A030528. (End)
p-INVERT of (2^n), where p(s) = 1 - s - s^2; see A289780. - Clark Kimberling, Aug 10 2017
LINKS
Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
FORMULA
G.f.: x*(1-x)/(1-5*x+5*x^2) = g1(3, x)/(1-g1(3, x)), g1(3, x) := x*(1-x)/(1-2*x)^2 (g.f. first column of A030523).
From Paul Barry, Apr 16 2004: (Start)
Binomial transform of Fibonacci(2n+2).
a(n) = (sqrt(5)/2 + 5/2)^n*(3*sqrt(5)/10 + 1/2) - (5/2 - sqrt(5)/2)^n*(3*sqrt(5)/10 - 1/2). (End)
a(n) = (1/5)*Sum_{r=1..9} sin(3*r*Pi/10)*sin(r*Pi/2)*(2*cos(r*Pi/10))^(2n)).
a(n) = 5*a(n-1) - 5*a(n-2).
a(n) = Sum_{k=0..n} Sum_{i=0..n} binomial(n, i)*binomial(k+i+1, 2k+1). - Paul Barry, Jun 22 2004
From Johannes W. Meijer, Jul 01 2010: (Start)
Limit_{k->infinity} a(n+k)/a(k) = (A020876(n) + A093131(n)*sqrt(5))/2.
Limit_{n->infinity} A020876(n)/A093131(n) = sqrt(5).
(End)
From Benito van der Zander, Nov 19 2015: (Start)
Limit_{k->infinity} a(k+1)/a(k) = 1 + phi^2 = (5 + sqrt(5)) / 2.
a(n) = a(n-1) * 3 + A081567(n-2) (not proved).
(End)
MATHEMATICA
CoefficientList[Series[(1 - x) / (1 - 5 x + 5 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 10 2014 *)
PROG
(PARI) Vec(x*(1-x)/(1-5*x+5*x^2) + O(x^40)) \\ Altug Alkan, Nov 20 2015
CROSSREFS
Cf. A000045.
Appears in A109106. - Johannes W. Meijer, Jul 01 2010
Cf. A001792. - Gary W. Adamson, Oct 26 2010
KEYWORD
easy,nonn
AUTHOR
STATUS
approved
A316269 Array T(n,k) = n*T(n,k-1) - T(n,k-2) read by upward antidiagonals, with T(n,0) = 0, T(n,1) = 1, n >= 2. +10
9
0, 0, 1, 0, 1, 2, 0, 1, 3, 3, 0, 1, 4, 8, 4, 0, 1, 5, 15, 21, 5, 0, 1, 6, 24, 56, 55, 6, 0, 1, 7, 35, 115, 209, 144, 7, 0, 1, 8, 48, 204, 551, 780, 377, 8, 0, 1, 9, 63, 329, 1189, 2640, 2911, 987, 9, 0, 1, 10, 80, 496, 2255, 6930, 12649, 10864, 2584, 10 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
2,6
COMMENTS
Define {x(k)} to be an integer sequence satisfying all the following conditions:
(i) {x(k)} satisfies second-order linear recursion, that is, there exists two integers P, Q such that x(k+2) = P*x(k+1) + Q*x(k) holds for all k >= 0.
(ii) {x(k)} is (not necessarily strictly) increasing. ({A000035(k)} satisfies condition (i), but it doesn't satisfy this.)
(iii) All terms in {x(k)} do not share a common factor. ({A024023(k)} satisfies both conditions (i) and (ii), but all terms share a common factor 2.)
(iv) {x(k)} satisfies strong divisibility, that is, gcd(x(m),x(n)) = x(gcd(m,n)) holds for all m, n >= 0. ({A093131(k)} satisfies all conditions (i) to (iii), but 5 = gcd(A093131(2),A093131(3)) != A093131(gcd(2,3)) = 1.)
(v) For all positive integers n, there eventually exists some m > 0 such that n divides x(m). ({A002275(k)} satisfies all conditions (i) to (iv), but 2, 5 and 10 never divide any term.)
Then it's easy to show that the only solutions to {x(k)} are x(k) = A172236(n,k) or x(k) = T(n,k), i.e., x(0) = 0, x(1) = 1, P >= 1, Q = 1 or P >= 2, Q = -1.
The case n = 0 is not included since it gives the period-4 signed sequence 0, 1, 0, -1, 0, 1, 0, -1, ..., the g.f. of which is the inverse of the 4th cyclotomic polynomial.
The case n = 1 is not included since it gives the period-6 signed sequence 0, 1, 1, 0, -1, -1, ..., the g.f. of which is the inverse of the 6th cyclotomic polynomial.
The congruence property: let p be an odd prime which is not divisible by n^2 - 4, then T(n,(p-1)/2) == 1/2(((n-2)/p) - ((n+2)/p)) (mod p), T(n,(p+1)/2) == 1/2(((n-2)/p) + ((n+2)/p)) (mod p). Here ((n-2)/p) is the Legendre symbol. Or equivalently:
((n-2)/p)...((n+2)/p)...T(n,(p-1)/2) mod p...T(n,(p+1)/2) mod p
.....1...........1...............0....................1
....-1..........-1...............0...................-1
.....1..........-1...............1....................0
....-1...........1..............-1....................0
To prove this, rewrite (n +- sqrt(n^2-4))/2 as ((sqrt(n+2) +- sqrt(n-2))/2)^2.
Let E(n,m) be the smallest number l such that m divides T(n,l), we have: E(n,p) divides (p - ((n^2-4)/p))/2 for odd primes p that are not divisible by n^2 - 4. E(n,p) = p for odd primes p that are divisible by n^2 - 4. E(n,2) = 2 for even n and 3 for odd n.
E(n,p^e) <= p^(e-1)*E(n,p) for all primes p. If p^2 does not divide T(n,E(n,p)), then E(n,p^e) = p^(e-1)*E(n,p) for all exponent e. Specially, for primes p >= 5 that are divisible by n^2 - 4, p^2 is never divisible by T(n,p), so E(n,p^e) = p^e as described above. E(n,m_1*m_2) = lcm(E(n,m_1),E(n,m_2)) if gcd(m_1,m_2) = 1.
Given n, the largest possible value of E(n,m)/m is 1 for even n and 3/2 for odd n. It can be obtained by the value of E(n,2) described above.
Let pi(n,m) be the Pisano period of T(n,k) modulo m, i.e, the smallest number l such that T(n,k+1) == T(n,k) (mod m) holds for all k >= 0, we have: for odd primes p that are not divisible by n^2 - 4, pi(n,p) divides p + ((n-2)/p) if ((n+2)/p) = -1 and (p - ((n-2)/p))/2 if ((n+2)/p) = 1. pi(n,p) = p for odd primes p that are divisible by n - 2 and 2p for odd primes p that are divisible by n + 2. pi(n,2) = 2 even n and 3 for odd n.
pi(n,p^e) <= p^(e-1)*pi(n,p) for all primes p. If p^2 does not divide T(n,E(n,p)), then pi(n,p^e) = p^(e-1)*pi(n,p) for all exponent e. Specially, for primes p >= 5 that are divisible by n^2 - 4, p^2 is never divisible by T(n,p), so pi(n,p^e) = p^e or 2p^e as described above. pi(n,m_1*m_2) = lcm(pi(n,m_1),pi(n,m_2)) if gcd(m_1,m_2) = 1.
Given n, the largest possible value of pi(n,m)/m is:
Parity of n...n + 2 is a power of 2 or 3...max{pi(n,m)/m}.....obtained by
....even..........yes (even exponent)............1...........pi(n,2^e) = 2^e
....even...........yes (odd exponent)...........4/3............pi(n,3) = 4
....even...................no....................2.............pi(n,p) = 2p (p >= 3 is any prime factor of n + 2)
.....odd..................yes....................2..........pi(n,3^e) = 2*3^e
.....odd...................no....................3..........pi(n,2p^e) = 6p^e (p >= 5 is any prime factor of n + 2)
The largest possible value of pi(n,m)/m is obtained by infinitely many m except for the case n = 10, in which we have pi(10,3) = 6, pi(10,7) = 8, pi(10,21) = 24 and pi(10,m)/m <= 14/13 for all other m. [Corrected by Jianing Song, Nov 04 2018]
Let z(n,m) be the number of zeros in a period of T(n,k) modulo m, i.e., z(n,m) = pi(n,m)/E(n,m), then we have: for odd primes p that are not divisible by n^2 - 4, z(n,p) = 2 if ((n+2)/p) = -1; 1 or 2 if ((n+2)/p) = 1. z(n,p) = 1 for odd primes p that are divisible by n - 2 and 2 for odd primes p that are divisible by n + 2. z(n,2) = 1.
For all odd primes p, z(n,p) = 2 if and only if pi(n,p) is even, z(n,p) = 1 if and only if pi(n,p) is odd. For all odd primes p, if E(n,p) is even then z(n,p) = 2 (the converse is not necessarily true). [Comment revised by Jianing Song, Jul 06 2019]
z(n,p^e) = z(n,p) for all odd primes p. z(n,4) = 1 if n == 2, 3 (mod 4) and 2 if n == 0, 1 (mod 4). z(n,2^e) = 1 for even n and 2 for odd n, e >= 3.
By induction it is easy to show that T(n,k) = T(n,m+1)*T(n,k-m) - T(n,m)*T(k-m-1). Let k = 2m we have T(n,2m) = T(n,m)*(T(n,m+1)-T(m-1)); let k = 2m+1 we have T(n,2m+1) = T(n,m+1)^2 - T(n,m)^2 = (T(n,m+1)+T(n,m))*(T(n,m+1)-T(n,m)). So T(n,k) is composite if n >= 3, k >= 3. - Jianing Song, Jul 06 2019
LINKS
FORMULA
T(2,k) = k; T(n,k) = (((n+sqrt(n^2 - 4))/2)^k - ((n - sqrt(n^2 - 4))/2)^k)/sqrt(n^2 - 4), n >= 3, k >= 0.
T(n^2+2,k) = A172236(n,2k); T(n^4+4n^2+2,k) = A172236(n,4k)/A172236(n,4).
For n >= 2, Sum_{i=1..k} 1/T(n,2^i) = 2/n - ((u^(2^k-1) + v^(2^k-1))/(u + v)) * (1/T(n,2^k)), where u = (n + sqrt(n^2 - 4))/2, v = (n - sqrt(n^2 - 4))/2 are the two roots of the polynomial x^2 - n*x + 1. As a result, Sum_{i=>1} 1/T(n,2^i) = (n - sqrt(n^2 - 4))/2. - Jianing Song, Apr 21 2019
EXAMPLE
The array starts in row n = 2 with columns k >= 0 as follows:
0 1 2 3 4 5 6
0 1 3 8 21 55 144
0 1 4 15 56 209 780
0 1 5 24 115 551 2640
0 1 6 35 204 1189 6930
0 1 7 48 329 2255 15456
0 1 8 63 496 3905 30744
0 1 9 80 711 6319 56160
0 1 10 99 980 9701 96030
0 1 11 120 1309 14279 155760
MATHEMATICA
Table[If[# == 2, k, Simplify[(((# + Sqrt[#^2 - 4])/2)^k - ((# - Sqrt[#^2 - 4])/2)^k)/Sqrt[#^2 - 4]]] &[n - k + 2], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Michael De Vlieger, Jul 19 2018 *)
PROG
(PARI) T(n, k) = if (k==0, 0, if (k==1, 1, n*T(n, k-1) - T(n, k-2)));
tabl(nn) = for(n=2, nn, for (k=0, nn, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 03 2018
(PARI) T(n, k) = ([n, -1; 1, 0]^k)[2, 1] \\ Jianing Song, Nov 10 2018
CROSSREFS
Cf. A172236.
Sequences with g.f. 1/(1-k*x+x^2): A001477 (k=2), A001906 (k=3), A001353 (k=4), A004254 (k=5), A001109 (k=6), A004187 (k=7), A001090 (k=8), A018913 (k=9), A004189 (k=10).
Cf. A005563 (4th column), A242135 (5th column), A057722 (6th column).
KEYWORD
nonn,tabl
AUTHOR
Jianing Song, Jun 28 2018
STATUS
approved
A083861 Square array T(n,k) of second binomial transforms of generalized Fibonacci numbers, read by ascending antidiagonals, with n, k >= 0. +10
4
0, 0, 1, 0, 1, 5, 0, 1, 5, 19, 0, 1, 5, 20, 65, 0, 1, 5, 21, 75, 211, 0, 1, 5, 22, 85, 275, 665, 0, 1, 5, 23, 95, 341, 1000, 2059, 0, 1, 5, 24, 105, 409, 1365, 3625, 6305, 0, 1, 5, 25, 115, 479, 1760, 5461, 13125, 19171, 0, 1, 5, 26, 125, 551, 2185, 7573, 21845, 47500, 58025 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,6
COMMENTS
Row n >= 0 of the array gives the solution to the recurrence b(k) = 5*b(k-1) + (n - 6)*b(k-2) for k >= 2 with b(0) = 0 and b(1) = 1. The rows are the binomial transforms of the rows of array A083857. The rows are the second binomial transforms of the generalized Fibonacci numbers in array A083856.
LINKS
FORMULA
T(n, k) = (((5 + sqrt(4*n + 1))/2)^k - ((5 - sqrt(4*n + 1))/2)^k)/sqrt(4*n + 1).
O.g.f. for row n >= 0: -x/(-1 + 5*x + (n-6)*x^2) . - R. J. Mathar, Dec 02 2007
From Petros Hadjicostas, Dec 25 2019: (Start)
T(n,k) = 5*T(n,k-1) + (n - 6)*T(n,k-2) for k >= 2 with T(n,0) = 0 and T(n,1) = 1 for all n >= 0.
T(n,k) = Sum_{i = 0..k} binomial(k,i) * A083857(n,i).
T(n,k) = Sum_{i = 0..k} Sum_{j = 0..i} binomial(k,i) * binomial(i,j) * A083856(n,j). (End)
EXAMPLE
Array T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
0, 1, 5, 19, 65, 211, 665, 2059, 6305, 19171, ...
0, 1, 5, 20, 75, 275, 1000, 3625, 13125, 47500, ...
0, 1, 5, 21, 85, 341, 1365, 5461, 21845, 87381, ...
0, 1, 5, 22, 95, 409, 1760, 7573, 32585, 140206, ...
0, 1, 5, 23, 105, 479, 2185, 9967, 45465, 207391, ...
0, 1, 5, 24, 115, 551, 2640, 12649, 60605, 290376, ...
0, 1, 5, 25, 125, 625, 3125, 15625, 78125, 390625, ...
...
MAPLE
seq(seq(round( (((5+sqrt(4*(n-k)+1))/2)^k - ((5-sqrt(4*(n-k)+1))/2)^k)/sqrt(4*(n-k)+1) ), k=0..n), n=0..10); # G. C. Greubel, Dec 27 2019
MATHEMATICA
T[n_, k_]:= Round[(((5 +Sqrt[4*n+1])/2)^k - ((5 -Sqrt[4*n+1])/2)^k)/Sqrt[4*n+1]]; Table[T[n-k, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 27 2019 *)
PROG
(PARI) T(n, k) = round( (((5+sqrt(4*n+1))/2)^k - ((5-sqrt(4*n+1))/2)^k)/sqrt(4*n + 1) );
for(n=0, 10, for(k=0, n, print1(T(n-k, k), ", "))) \\ G. C. Greubel, Dec 27 2019
(Magma)
T:= func< n, k | Round( (((5+Sqrt(4*n+1))/2)^k - ((5-Sqrt(4*n+1))/2)^k)/Sqrt(4*n + 1) ) >;
[T(n-k, k): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 27 2019
(Sage) [[round( (((5+sqrt(4*(n-k)+1))/2)^k - ((5-sqrt(4*(n-k)+1))/2)^k)/sqrt(4*(n-k)+1) ) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 27 2019
CROSSREFS
Rows include A001047 (n=0), A093131 (n=1), A002450 (n=2), A004254 (n=5), A000351 (n=6), A052918 (n=7), A015535 (n=8), A015536 (n=9), A015537 (n=10).
Cf. A083856 (second inverse binomial transform), A083856 (first inverse binomial transform), A082297 (main diagonal).
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, May 06 2003
EXTENSIONS
Name and various sections edited by Petros Hadjicostas, Dec 25 2019
STATUS
approved
A217593 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >=1 or if k-n >= 9, T(0,k) = 1 for k = 0..8, T(n,k) = T(n-1,k) + T(n,k-1). +10
3
1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 1, 4, 5, 0, 0, 0, 1, 5, 9, 5, 0, 0, 0, 1, 6, 14, 14, 0, 0, 0, 0, 1, 7, 20, 28, 14, 0, 0, 0, 0, 0, 8, 27, 48, 42, 0, 0, 0, 0, 0, 0, 8, 35, 75, 90, 42, 0, 0, 0, 0, 0, 0, 0, 43, 110, 165, 132, 0, 0, 0, 0, 0, 0, 0, 0, 43, 153, 275, 297, 132, 0, 0, 0, 0, 0, 0, 0, 0, 0, 196, 428, 572, 429, 0, 0, 0, 0, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
REFERENCES
A hexagon arithmetic of E. Lucas.
LINKS
FORMULA
T(n,n) = A033191(n).
T(n,n+1) = A033191(n+1).
T(n,n+2) = A033190(n+1).
T(n,n+3) = A094667(n+1).
T(n,n+4) = A093131(n+1) = A030191(n).
T(n,n+5) = A094788(n+2).
T(n,n+6) = A094825(n+3).
T(n,n+7) = T(n,n+8) = A094865(n+3).
Sum_{k, 0<=k<=n} T(n-k,k) = A178381(n).
EXAMPLE
Square array begins :
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, ...
0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 0, 0, ...
0, 0, 2, 5, 9, 14, 20, 27, 35, 43, 43, 0, 0, ...
0, 0, 0, 5, 14, 28, 75, 110, 153, 196, 196, 0, 0, ....
0, 0, 0, 0, 14, 42, 90, 165, 275, 428, 624, 820, 820, 0, 0, ...
...
Square array, read by rows, with 0 omitted:
1, 1, 1, 1, 1, 1, 1, 1, 1
1, 2, 3, 4, 5, 6, 7, 8, 8
2, 5, 9, 14, 20, 27, 35, 43, 43
5, 14, 28, 48, 75, 110, 153, 196, 196
14, 42, 90, 165, 275, 428, 624, 820, 820
42, 132, 297, 572, 1000, 1624, 2444, 3264, 3264
132, 429, 1001, 2001, 3625, 6069, 9333, 12597, 12597
429, 1430, 3431, 7056, 13125, 22458, 35055, 47652, 47652
...
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Mar 18 2013
STATUS
approved
A093130 Third binomial transform of Fibonacci(3n). +10
2
0, 2, 20, 160, 1200, 8800, 64000, 464000, 3360000, 24320000, 176000000, 1273600000, 9216000000, 66688000000, 482560000000, 3491840000000, 25267200000000, 182835200000000, 1323008000000000, 9573376000000000 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
G.f.: 2*x/(1-10*x+20*x^2).
a(n) = ((5+sqrt(5))^n - (5-sqrt(5))^n)/sqrt(5).
a(n) = 2^n*A093131(n).
a(0)=0, a(1)=2, a(n) = 10*a(n-1) - 20*a(n-2). - Harvey P. Dale, Jun 24 2015
a(2*n) = 2^(2*n)*5^n*Fibonacci(2*n), a(2*n+1) = 2^(2*n+1)*5^n*Lucas(2*n+1). - G. C. Greubel, Dec 27 2019
MAPLE
seq(coeff(series(2*x/(1-10*x+20*x^2), x, n+1), x, n), n = 0..20); # G. C. Greubel, Dec 27 2019
MATHEMATICA
LinearRecurrence[{10, -20}, {0, 2}, 20] (* Harvey P. Dale, Jun 24 2015 *)
Table[If[EvenQ[n], 2^n*5^(n/2)*Fibonacci[n], 2^n*5^((n-1)/2)*LucasL[n]], {n, 0, 20}] (* G. C. Greubel, Dec 27 2019 *)
PROG
(PARI) my(x='x+O('x^20)); concat([0], Vec(2*x/(1-10*x+20*x^2))) \\ G. C. Greubel, Dec 27 2019
(Magma) I:=[0, 2]; [n le 2 select I[n] else 10*Self(n-1) - 20*Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 27 2019
(Sage)
def A093130_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 2*x/(1-10*x+20*x^2) ).list()
A093130_list(20) # G. C. Greubel, Dec 27 2019
(GAP) a:=[0, 2];; for n in [3..20] do a[n]:=10*a[n-1]-20*a[n-2]; od; a; # G. C. Greubel, Dec 27 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 23 2004
STATUS
approved
A171731 Triangle T : T(n,k)= binomial(n,k)*Fibonacci(n-k)= A007318(n,k)*A000045(n-k). +10
0
0, 1, 0, 1, 2, 0, 2, 3, 3, 0, 3, 8, 6, 4, 0, 5, 15, 20, 10, 5, 0, 8, 30, 45, 40, 15, 6, 0, 13, 56, 105, 105, 70, 21, 7, 0, 21, 104, 224, 280, 210, 112, 28, 8, 0, 34, 189, 468, 672, 630, 378, 168, 36, 9, 0, 55, 340, 945, 1560, 1680, 1260, 630, 240, 45, 10, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
Diagonal sums : A112576.
Essentially the same as A094440. - Peter Bala, Jan 06 2015
LINKS
FORMULA
Sum_{k, 0<=k<=n} T(n,k)*x^k = A000045(n), A001906(n), A093131(n), A099453(n-1), A081574(n), A081575(n) for x = 0,1,2,3,4,5 respectively. Sum_{k, 0<=k<=n} T(n,k)*2^(n-k) = A014445(n).
EXAMPLE
Triangle begins :
0 ;
1,0 ;
1,2,0 ;
2,3,3,0 ;
3,8,6,4,0 ;
5,15,20,10,5,0 ;
...
MATHEMATICA
Flatten[Table[Binomial[n, k]Fibonacci[n-k], {n, 0, 10}, {k, 0, n}]] (* Harvey P. Dale, Jan 16 2013 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Dec 16 2009
STATUS
approved
page 1

Search completed in 0.015 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 29 14:31 EDT 2024. Contains 375517 sequences. (Running on oeis4.)