[go: up one dir, main page]

login
Search: a092585 -id:a092585
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers k such that sigma(phi(k)) == phi(sigma(k)) (mod k), that is, A033632(k)/k is an integer.
+10
8
1, 5, 9, 157, 225, 242, 516, 729, 3872, 13932, 14406, 17672, 18225, 20124, 21780, 29262, 29616, 45996, 65025, 76832, 92778, 95916, 106092, 106308, 114630, 114930, 121872, 125652, 140130, 140625, 145794, 149124, 160986, 179562, 185100, 234876
OFFSET
1,2
LINKS
EXAMPLE
Includes but is not identical with A033632.
Below 10^7 only a(2) = 5 and a(4) = 157 give A033632(n)/n nonzero.
MATHEMATICA
Select[Range[250000], Divisible[DivisorSigma[1, EulerPhi[#]] - EulerPhi[DivisorSigma[1, #]] , #] &] (* Amiram Eldar, Mar 12 2020 *)
PROG
(PARI) is(n)=sigma(eulerphi(n))==Mod(eulerphi(sigma(n)), n) \\ Charles R Greathouse IV, Nov 27 2013
KEYWORD
nonn
AUTHOR
Labos Elemer, Mar 01 2004
STATUS
approved
a(n) = -A065395(2^n).
+10
2
0, 1, 3, 1, 15, 5, 63, 1, 177, 89, 913, -319, 4095, 2393, 10617, 1, 65535, 8897, 262143, -44287, 729537, 543553, 4015777, -1753087, 15622785, 11162969, 46358529, -1452031, 265390977, -2270911, 1073741823, 1, 2668569153, 2862962009, 15344762817, -8238350335, 68103158337, 45811586393
OFFSET
0,3
LINKS
FORMULA
a(n) = phi(2^(n+1)-1) - 2^n + 1 = A053287(n+1) - A000225(n). - Amiram Eldar, Jun 09 2024
MATHEMATICA
fs[x_] := EulerPhi[DivisorSigma[1, x]]; sf[x_] := DivisorSigma[1, EulerPhi[x]]; Table[fs[2^w]-sf[2^w], {w, 0, 65}]
KEYWORD
sign
AUTHOR
Labos Elemer, Mar 02 2004
EXTENSIONS
Offset changed to 0, a(0) prepended and name corrected by Amiram Eldar, Jun 09 2024
STATUS
approved
a(n) = A065395(A000040(n)); values of commutator of sigma and phi function at prime number arguments.
+10
2
-1, 1, 5, 8, 14, 22, 25, 31, 28, 48, 56, 73, 78, 76, 56, 80, 74, 138, 112, 120, 159, 136, 102, 156, 210, 185, 168, 126, 240, 212, 248, 212, 226, 240, 226, 300, 314, 283, 204, 252, 222, 474, 296, 412, 339, 388, 472, 360, 270, 472, 378, 368, 634, 396, 427, 316, 404, 592, 534, 628, 436, 434, 582, 480, 684, 456, 700, 836
OFFSET
1,3
COMMENTS
The sequence differs from A065394 since it is not monotonic.
LINKS
FORMULA
a(n) = sigma(prime(n)-1) - phi(prime(n)+1) = A008332(n) - A008331(n). - Amiram Eldar, Jun 09 2024
EXAMPLE
a(1) = sigma(phi(2))- phi(sigma(2)) = sigma(1)-phi(3) = 1-2 = -1.
MATHEMATICA
Table[DivisorSigma[1, p-1] - EulerPhi[p+1], {p, Prime[Range[100]]}] (* Amiram Eldar, Jun 09 2024 *)
PROG
(Magma) [DivisorSigma(1, EulerPhi(p))-EulerPhi(DivisorSigma(1, p)): p in PrimesUpTo(400)]; // Bruno Berselli, Oct 20 2015
KEYWORD
sign,look
AUTHOR
Labos Elemer, Mar 03 2004
STATUS
approved

Search completed in 0.011 seconds