Displaying 1-3 of 3 results found.
page
1
Numbers k such that sigma(phi(k)) == phi(sigma(k)) (mod k), that is, A033632(k)/k is an integer.
+10
8
1, 5, 9, 157, 225, 242, 516, 729, 3872, 13932, 14406, 17672, 18225, 20124, 21780, 29262, 29616, 45996, 65025, 76832, 92778, 95916, 106092, 106308, 114630, 114930, 121872, 125652, 140130, 140625, 145794, 149124, 160986, 179562, 185100, 234876
EXAMPLE
Includes but is not identical with A033632.
Below 10^7 only a(2) = 5 and a(4) = 157 give A033632(n)/n nonzero.
MATHEMATICA
Select[Range[250000], Divisible[DivisorSigma[1, EulerPhi[#]] - EulerPhi[DivisorSigma[1, #]] , #] &] (* Amiram Eldar, Mar 12 2020 *)
0, 1, 3, 1, 15, 5, 63, 1, 177, 89, 913, -319, 4095, 2393, 10617, 1, 65535, 8897, 262143, -44287, 729537, 543553, 4015777, -1753087, 15622785, 11162969, 46358529, -1452031, 265390977, -2270911, 1073741823, 1, 2668569153, 2862962009, 15344762817, -8238350335, 68103158337, 45811586393
MATHEMATICA
fs[x_] := EulerPhi[DivisorSigma[1, x]]; sf[x_] := DivisorSigma[1, EulerPhi[x]]; Table[fs[2^w]-sf[2^w], {w, 0, 65}]
CROSSREFS
Cf. A000010, A000203, A000225, A033632, A053287, A065395, A092584, A092585, A092586, A092587, A092588.
EXTENSIONS
Offset changed to 0, a(0) prepended and name corrected by Amiram Eldar, Jun 09 2024
a(n) = A065395( A000040(n)); values of commutator of sigma and phi function at prime number arguments.
+10
2
-1, 1, 5, 8, 14, 22, 25, 31, 28, 48, 56, 73, 78, 76, 56, 80, 74, 138, 112, 120, 159, 136, 102, 156, 210, 185, 168, 126, 240, 212, 248, 212, 226, 240, 226, 300, 314, 283, 204, 252, 222, 474, 296, 412, 339, 388, 472, 360, 270, 472, 378, 368, 634, 396, 427, 316, 404, 592, 534, 628, 436, 434, 582, 480, 684, 456, 700, 836
COMMENTS
The sequence differs from A065394 since it is not monotonic.
EXAMPLE
a(1) = sigma(phi(2))- phi(sigma(2)) = sigma(1)-phi(3) = 1-2 = -1.
MATHEMATICA
Table[DivisorSigma[1, p-1] - EulerPhi[p+1], {p, Prime[Range[100]]}] (* Amiram Eldar, Jun 09 2024 *)
PROG
(Magma) [DivisorSigma(1, EulerPhi(p))-EulerPhi(DivisorSigma(1, p)): p in PrimesUpTo(400)]; // Bruno Berselli, Oct 20 2015
CROSSREFS
Cf. A000010, A000040, A000203, A033632, A065393, A065394, A065395, A008331, A008332, A092584, A092585, A092586, A092587, A092588, A092589.
Search completed in 0.011 seconds
|