[go: up one dir, main page]

login
Search: a086796 -id:a086796
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) is the number of terms in the expansion of (x+y-z)*(x^2+y^2-z^2)*(x^3+y^3-z^3)*...*(x^n+y^n-z^n).
+10
3
3, 9, 22, 48, 102, 182, 328, 566, 910, 1396, 2025, 2882, 3976, 5304, 7002, 9071, 11475, 14444, 17886, 21896, 26531, 31880, 37947, 44899, 52657, 61500, 71406, 82383, 94592, 108097, 123017, 139401, 157439, 177134, 198634, 221962, 247378, 274767, 304483, 336533, 371083, 408168, 447944, 490614, 536208
OFFSET
1,1
MAPLE
P:= 1;
for n from 1 to 90 do
P:= expand(P*(x^n+y^n-z^n));
A[n]:= nops(P);
od:
seq(A[n], n=1..90); # Robert Israel, Apr 14 2017
MATHEMATICA
Table[Length[Expand[Times@@Table[x^n+y^n-z^n, {n, i}]]], {i, 50}] (* Harvey P. Dale, Oct 02 2018 *)
CROSSREFS
Cf. A086796.
KEYWORD
nonn
AUTHOR
Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 06 2003
EXTENSIONS
a(12)-a(45) from Robert Israel, Apr 14 2017
STATUS
approved
a(n) is the number of terms in the expansion of (x-y)*(x^4-y^4)*(x^9-y^9)*...*(x^(n^2)-y^(n^2)).
+10
2
2, 4, 8, 16, 24, 40, 68, 103, 162, 236, 344, 453, 612, 790, 994, 1229, 1432, 1782, 2134, 2517, 2968, 3460, 3974, 4543, 5160, 5822, 6546, 7347, 8184, 9080, 10058, 11075, 12166, 13316, 14536, 15837, 17202, 18654, 20156, 21765, 23450, 25212, 27074, 29001, 31032, 33158, 35370, 37679, 40070, 42578
OFFSET
1,1
COMMENTS
In the definition one can take y=1. Thus the sequence becomes the number of terms in the polynomial of the product{k=1..n} (1-x^(k^2)).
MATHEMATICA
a[n_] := Length@ ExpandAll@ Product[(1 - x^(k^2)), {k, n}]; Array[f, 40]
PROG
(PARI) a(n)=my(P=prod(k=1, n, 1-'x^k^2)); sum(i=0, poldegree(P), polcoeff(P, i)!=0) \\ Charles R Greathouse IV, May 10 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Yuval Dekel (dekelyuval(AT)hotmail.com) and Robert G. Wilson v, May 10 2013
STATUS
approved
a(n) is the number of terms in the expansion of (x-y)(x^2-y^2)*(x^3-y^3)*(x^5-y^5)*...*(x^p_i-y^p_i), where p_i is the i-th prime.
+10
1
2, 4, 6, 8, 10, 20, 22, 36, 42, 66, 90, 110, 142, 184, 232, 284, 342, 400, 458, 532, 604, 678, 756, 838, 928, 1026, 1126, 1230, 1336, 1446, 1558, 1686, 1816, 1954, 2092, 2242, 2392, 2550, 2712, 2880, 3052, 3232, 3412, 3604, 3796, 3994, 4192, 4404, 4626, 4854, 5082
OFFSET
1,1
COMMENTS
In the definition one can take y=1. Thus the sequence becomes the number of terms in the polynomial of the product{k=0..n} (1-x^p_i), where p_i is the i-th prime and p_0 = 1.
Offset is 1 to keep it parallel to other like sequences.
MATHEMATICA
f[n_] := Length@ ExpandAll[(1 - x) Product[(1 - x^Prime[k]), {k, n}]]; Array[f, 51, 0]
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, May 12 2013
STATUS
approved
a(n) is the number of terms in the expansion of (x-y)(x^3-y^3)*(x^6-y^6)*(x^10-y^10)*...*(x^T_i-y^T_i), where T_i is the i-th triangular number.
+10
0
2, 4, 8, 15, 28, 41, 66, 92, 132, 175, 232, 287, 360, 475, 570, 727, 852, 1009, 1220, 1397, 1646, 1891, 2154, 2441, 2772, 3121, 3508, 3891, 4334, 4791, 5282, 5797, 6376, 6983, 7618, 8285, 8984, 9713, 10500, 11319, 12182, 13093, 14028, 15023, 16064, 17157, 18276, 19447, 20680, 21953
OFFSET
1,1
COMMENTS
In the definition one can take y=1. Thus the sequence becomes the number of terms in the polynomial of the product{k=0..n} (1-x^T_i), where G_i is the i-th triangular number.
MATHEMATICA
f[n_] := Length@ ExpandAll@ Product[1 - x^(k (k + 1)/2), {k, n}]; Array[f, 50]
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, May 12 2013
STATUS
approved

Search completed in 0.009 seconds