[go: up one dir, main page]

login
Search: a086351 -id:a086351
     Sort: relevance | references | number | modified | created      Format: long | short | data
Second binomial transform of F(n+1).
+10
29
1, 3, 10, 35, 125, 450, 1625, 5875, 21250, 76875, 278125, 1006250, 3640625, 13171875, 47656250, 172421875, 623828125, 2257031250, 8166015625, 29544921875, 106894531250, 386748046875, 1399267578125, 5062597656250, 18316650390625, 66270263671875, 239768066406250
OFFSET
0,2
COMMENTS
Binomial transform of F(2*n-1), index shifted by 1, where F is A000045. - corrected by Richard R. Forberg, Aug 12 2013
Case k=2 of family of recurrences a(n) = (2k+1)*a(n-1) - A028387(k-1)*a(n-2), a(0)=1, a(1)=k+1.
Number of (s(0), s(1), ..., s(2n+1)) such that 0 < s(i) < 10 and |s(i) - s(i-1)| = 1 for i = 1, 2, ..., 2*n+1, s(0) = 3, s(2*n+1) = 4.
a(n+1) gives the number of periodic multiplex juggling sequences of length n with base state <2>. - Steve Butler, Jan 21 2008
a(n) is also the number of idempotent order-preserving partial transformations (of an n-element chain) of waist n (waist(alpha) = max(Im(alpha))). - Abdullahi Umar, Sep 14 2008
Counts all paths of length (2*n+1), n>=0, starting at the initial node on the path graph P_9, see the Maple program. - Johannes W. Meijer, May 29 2010
Given the 3 X 3 matrix M = [1,1,1; 1,1,0; 1,1,3], a(n) = term (1,1) in M^(n+1). - Gary W. Adamson, Aug 06 2010
Number of nonisomorphic graded posets with 0 and 1 of rank n+2, with exactly 2 elements of each rank level between 0 and 1. Also the number of nonisomorphic graded posets with 0 of rank n+1, with exactly 2 elements of each rank level above 0. (This is by Stanley's definition of graded, that all maximal chains have the same length.) - David Nacin, Feb 26 2012
a(n) = 3^n a(n;1/3) = Sum_{k=0..n} C(n,k) * F(k-1) * (-1)^k * 3^(n-k), which also implies the Deleham formula given below and where a(n;d), n=0,1,...,d, denote the delta-Fibonacci numbers defined in comments to A000045 (see also the papers of Witula et al.). - Roman Witula, Jul 12 2012
The limiting ratio a(n)/a(n-1) is 1 + phi^2. - Bob Selcoe, Mar 17 2014
a(n) counts closed walks on K_2 containing 3 loops on the index vertex and 2 loops on the other. Equivalently the (1,1) entry of A^n where the adjacency matrix of digraph is A=(3,1; 1,2). - David Neil McGrath, Nov 18 2014
REFERENCES
R. P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge University Press, Cambridge, 1997, pages 96-100.
LINKS
Santiago Alzate, Oscar Correa, and Rigoberto Flórez, Fibonacci identities from Jordan Identities, arXiv:2009.02639 [math.NT], 2020.
Carolina Benedetti, Christopher R. H. Hanusa, Pamela E. Harris, Alejandro H. Morales, and Anthony Simpson, Kostant's partition function and magic multiplex juggling sequences, arXiv:2001.03219 [math.CO], 2020. See Table 1 p. 12.
S. Butler and R. Graham, Enumerating (multiplex) juggling sequences, arXiv:0801.2597 [math.CO], 2008.
P. E. Harris, E. Insko, and L. K. Williams, The adjoint representation of a Lie algebra and the support of Kostant's weight multiplicity formula, arXiv preprint arXiv:1401.0055 [math.RT], 2013.
Edyta Hetmaniok, Bożena Piątek, and Roman Wituła, Binomials Transformation Formulae of Scaled Fibonacci Numbers, Open Mathematics, 15(1) (2017), 477-485.
A. Laradji and A. Umar, A. Combinatorial results for semigroups of order-preserving partial transformations, Journal of Algebra 278, (2004), 342-359.
A. Laradji and A. Umar, Combinatorial results for semigroups of order-decreasing partial transformations, J. Integer Seq. 7 (2004), #04.3.8.
Mircea Merca, A Note on Cosine Power Sums J. Integer Sequences, Vol. 15 (2012), Article 12.5.3.
D. Nacin, The Minimal Non-Koszul A(Gamma), arXiv preprint arXiv:1204.1534 [math.QA], 2012. - From N. J. A. Sloane, Oct 05 2012
Roman Witula and Damian Slota, delta-Fibonacci numbers, Appl. Anal. Discr. Math 3 (2009) 310-329, MR2555042.
FORMULA
a(n) = 5*a(n-1) - 5*a(n-2) for n >= 2, with a(0) = 1 and a(1) = 3.
a(n) = (1/2 - sqrt(5)/10) * (5/2 - sqrt(5)/2)^n + (sqrt(5)/10 + 1/2) * (sqrt(5)/2 + 5/2)^n.
G.f.: (1 - 2*x)/(1 - 5*x + 5*x^2).
a(n-1) = Sum_{k=1..n} binomial(n, k)*F(k)^2. - Benoit Cloitre, Oct 26 2003
a(n) = A090041(n)/2^n. - Paul Barry, Mar 23 2004
The sequence 0, 1, 3, 10, ... with a(n) = (5/2 - sqrt(5)/2)^n/5 + (5/2 + sqrt(5)/2)^n/5 - 2(0)^n/5 is the binomial transform of F(n)^2 (A007598). - Paul Barry, Apr 27 2004
From Paul Barry, Nov 15 2005: (Start)
a(n) = Sum_{k=0..n} Sum_{j=0..n} binomial(n, j)*binomial(j+k, 2k);
a(n) = Sum_{k=0..n} Sum_{j=0..n} binomial(n, k+j)*binomial(k, k-j)2^(n-k-j);
a(n) = Sum_{k=0..n} Sum_{j=0..n-k} binomial(n+k-j, n-k-j)*binomial(k, j)(-1)^j*2^(n-k-j). (End)
a(n) = A111776(n, n). - Abdullahi Umar, Sep 14 2008
a(n) = Sum_{k=0..n} A094441(n,k)*2^k. - Philippe Deléham, Dec 14 2009
a(n+1) = Sum_{k=-floor(n/5)..floor(n/5)} ((-1)^k*binomial(2*n, n+5*k)/2). -Mircea Merca, Jan 28 2012
a(n) = A030191(n) - 2*A030191(n-1). - R. J. Mathar, Jul 19 2012
G.f.: Q(0,u)/x - 1/x, where u=x/(1-2*x), Q(k,u) = 1 + u^2 + (k+2)*u - u*(k+1 + u)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 07 2013
For n>=3: a(n) = a(n-1)*(3+(a(n-1) mod a(n-2) - a(n-2) mod a(n-3))/(a(n-2) - a(n-3))). - Bob Selcoe, Mar 17 2014
a(n) = sqrt(5)^(n-1)*(3*S(n-1, sqrt(5)) - sqrt(5)*S(n-2, sqrt(5))) with Chebyshev's S-polynomials (see A049310), where S(-1, x) = 0 and S(-2, x) = -1. This is the (1,1) entry of A^n with the matrix A=(3,1;1,2). See the comment by David Neil McGrath, Nov 18 2014. - Wolfdieter Lang, Dec 04 2014
Conjecture: a(n) = 2*a(n-1) + A039717(n). - Benito van der Zander, Nov 20 2015
a(n) = A189315(n+1) / 10. - Tom Copeland, Dec 08 2015
a(n) = A093129(n) + A030191(n-1). - Gary W. Adamson, Apr 24 2023
E.g.f.: exp(5*x/2)*(5*cosh(sqrt(5)*x/2) + sqrt(5)*sinh(sqrt(5)*x/2))/5. - Stefano Spezia, Jun 03 2024
EXAMPLE
a(4)=125: 35*(3 + (35 mod 10 - 10 mod 3)/(10-3)) = 35*(3 + 4/7) = 125. - Bob Selcoe, Mar 17 2014
MAPLE
with(GraphTheory):G:=PathGraph(9): A:= AdjacencyMatrix(G): nmax:=23; n2:=nmax*2+2: for n from 0 to n2 do B(n):=A^n; a(n):=add(B(n)[1, k], k=1..9); od: seq(a(2*n+1), n=0..nmax); # Johannes W. Meijer, May 29 2010
MATHEMATICA
Table[MatrixPower[{{2, 1}, {1, 3}}, n][[2]][[2]], {n, 0, 44}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
LinearRecurrence[{5, -5}, {1, 3}, 30] (* Vincenzo Librandi, Feb 27 2012 *)
PROG
(Magma) I:=[1, 3]; [n le 2 select I[n] else 5*Self(n-1)-5*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 27 2012
(Python)
def a(n, adict={0:1, 1:3}):
if n in adict:
return adict[n]
adict[n]=5*a(n-1) - 5*a(n-2)
return adict[n] # David Nacin, Mar 04 2012
(PARI) Vec((1-2*x)/(1-5*x+5*x^2)+O(x^99)) \\ Charles R Greathouse IV, Mar 18 2014
CROSSREFS
a(n) = 5*A052936(n-1), n > 1.
Row sums of A114164.
Cf. A000045, A007051 (INVERTi transform), A007598, A028387, A030191, A039717, A049310, A081568 (binomial transform), A086351 (INVERT transform), A090041, A093129, A094441, A111776, A147748, A178381, A189315.
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 22 2003
STATUS
approved
Number of ways to cut a 2 X n rectangle into rectangles with integer sides.
+10
6
1, 2, 8, 34, 148, 650, 2864, 12634, 55756, 246098, 1086296, 4795090, 21166468, 93433178, 412433792, 1820570506, 8036386492, 35474325410, 156591247016, 691227204226, 3051224496244, 13468756547882, 59453967813584, 262442511046330, 1158477291582892
OFFSET
0,2
COMMENTS
Hankel transform is 1, 4, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... . - Philippe Deléham, Dec 10 2011
LINKS
David A. Klarner and Spyros S. Magliveras, The number of tilings of a block with blocks, European Journal of Combinatorics 9 (1988), 317-330.
FORMULA
a(n) = 1+3^(n-1) + Sum_{i=1..n-1} (1+3^(i-1)) a(n-i).
a(n) = 6a(n - 1) - 7a(n - 2), a(n) = ((4 + sqrt(2)) (3 + sqrt(2))^n + (4 - sqrt(2)) (3 - sqrt(2))^n)/14. - N. Sato, May 10 2006
G.f.: (1-x)*(1-3*x)/(1-6*x+7*x^2). - Richard Stanley, Dec 09 2011
E.g.f.: (3 + exp(3*x)*(4*cosh(sqrt(2)*x) + sqrt(2)*sinh(sqrt(2)*x)))/7. - Stefano Spezia, Feb 17 2022
a(n) = 2*A086351(n-1), n>0. - R. J. Mathar, Apr 07 2022
EXAMPLE
For n=2 the a(2) = 8 ways to cut are:
.___. .___. .___. .___. .___. .___. .___. .___.
| | | | | |___| | |_| |_| | |___| |_|_| |_|_|
|___| |_|_| |___| |_|_| |_|_| |_|_| |___| |_|_| .
CROSSREFS
Column 2 of A116694. - Alois P. Heinz, Dec 10 2012
KEYWORD
nonn,easy
EXTENSIONS
a(0) added by Richard Stanley, Dec 09 2011
STATUS
approved
G.f. (1-x)/(7*x^2-6*x+1).
+10
6
1, 5, 23, 103, 457, 2021, 8927, 39415, 174001, 768101, 3390599, 14966887, 66067129, 291634565, 1287337487, 5682582967, 25084135393, 110726731589, 488771441783, 2157541529575, 9523849084969, 42040303802789
OFFSET
0,2
COMMENTS
A floretion-generated sequence relating to the second binomial transform of Pell numbers A000129.
Floretion Algebra Multiplication Program, FAMP Code: (a(n)) = jesforseq[ + .5'i + .5i' + 2'jj' + .5'ij' + .5'ji' ]; A000004 = vesforseq.
FORMULA
a(n) = A086351(n+1) - 3*A086351(n) (FAMP result); Inversion gives A027649 (SuperSeeker result); Inverse binomial transform of A007070 (SuperSeeker result);
From Al Hakanson (hawkuu(AT)gmail.com), Jul 25 2009: (Start)
a(n) = ((1+sqrt(2))*(3+sqrt(2))^n + (1-sqrt(2))*(3-sqrt(2))^n)/2 offset 0.
Third binomial transform of 1,2,2,4,4. (End)
a(n) = 6*a(n-1) - 7*a(n-2) for n > 1; a(0)=1, a(1)=5. - Philippe Deléham, Sep 19 2009
a(n) = A081179(n) + A086351(n). - Joseph M. Shunia, Sep 09 2019
a(n) = A081179(n+1)-A081179(n). - R. J. Mathar, Sep 11 2019
MATHEMATICA
CoefficientList[Series[(1-x)/(7x^2-6x+1), {x, 0, 30}], x] (* or *) LinearRecurrence[{6, -7}, {1, 5}, 30] (* Harvey P. Dale, Dec 10 2017 *)
PROG
(Magma) [Floor(((1+Sqrt(2))*(3+Sqrt(2))^n+(1-Sqrt(2))*(3-Sqrt(2))^n)/2): n in [0..30]]; // Vincenzo Librandi, Oct 12 2011
CROSSREFS
Cf. A086351, A027649, A007070 (inv. Binom. Trans.), A081179, A163350 (Binomial Trans.).
KEYWORD
nonn,easy
AUTHOR
Creighton Dement, Feb 19 2005
STATUS
approved
Expansion of (1-3*x)/(1-8*x+14*x^2).
+10
6
1, 5, 26, 138, 740, 3988, 21544, 116520, 630544, 3413072, 18476960, 100032672, 541583936, 2932214080, 15875537536, 85953303168, 465368899840, 2519604954368, 13641675037184, 73858930936320, 399887996969984
OFFSET
0,2
COMMENTS
Fourth binomial transform of A016116.
Inverse binomial transform of A161734. Binomial transform of A086351. - R. J. Mathar, Jun 18 2009
FORMULA
a(n) = ((2+sqrt(2))*(4+sqrt(2))^n+(2-sqrt(2))*(4-sqrt(2))^n)/4.
a(n) = 8*a(n-1)-14*a(n-2). - R. J. Mathar, Jun 18 2009
a(n) = A081180(n+1) -3*A081180(n). - R. J. Mathar, Jul 19 2012
MATHEMATICA
CoefficientList[Series[(1-3x)/(1-8x+14x^2), {x, 0, 30}], x] (* or *) LinearRecurrence[{8, -14}, {1, 5}, 30] (* Harvey P. Dale, Feb 29 2024 *)
PROG
(PARI) F=nfinit(x^2-2); for(n=0, 20, print1(nfeltdiv(F, ((2+x)*(4+x)^n+(2-x)*(4-x)^n), 4)[1], ", ")) \\ Klaus Brockhaus, Jun 19 2009
(Magma)[Floor(((2+Sqrt(2))*(4+Sqrt(2))^n+(2-Sqrt(2))*(4-Sqrt(2))^n)/4): n in [0..30]]; // Vincenzo Librandi, Aug 18 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Jun 17 2009
EXTENSIONS
Extended by R. J. Mathar and Klaus Brockhaus, Jun 18 2009
Edited by Klaus Brockhaus, Jul 05 2009
STATUS
approved
Square array of Pell related numbers, read by antidiagonals.
+10
3
1, 1, 1, 1, 2, 2, 1, 3, 5, 2, 1, 4, 10, 12, 4, 1, 5, 17, 34, 29, 4, 1, 6, 26, 74, 116, 70, 8, 1, 7, 37, 138, 325, 396, 169, 8, 1, 8, 50, 232, 740, 1432, 1352, 408, 16, 1, 9, 65, 362, 1469, 3988, 6317, 4616, 985, 16, 1, 10, 82, 534, 2644, 9354, 21544, 27878, 15760, 2378, 32
OFFSET
0,5
COMMENTS
Rows include A016116, A000129, A007052, A086351. Main diagonal is A086352. Rows are successive binomial transforms of (1, 1, 2, 2, 4, 4, ...).
FORMULA
T(n, k) = ((1+sqrt(2))(k+sqrt(2))^n-(1-sqrt(2))(k-sqrt(2))^n)/(sqrt(8)).
EXAMPLE
Rows start
1 1 2 2 4 ...
1 2 5 12 29 ...
1 3 10 34 116 ...
1 4 17 74 325 ...
1 5 26 138 740 ...
CROSSREFS
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Jul 18 2003
STATUS
approved
a(n) = ((2+sqrt(2))*(5+sqrt(2))^n+(2-sqrt(2))*(5-sqrt(2))^n)/4.
+10
3
1, 6, 37, 232, 1469, 9354, 59753, 382388, 2449561, 15700686, 100666957, 645553792, 4140197909, 26554241874, 170317866833, 1092431105228, 7007000115121, 44944085730966, 288279854661877, 1849084574806552, 11860409090842349, 76075145687872794
OFFSET
0,2
COMMENTS
Fifth binomial transform of A016116. Fourth binomial transform of the sequence of the absolute values of A077985. Third binomial transform of A007052. Second binomial transform of A086351. - R. J. Mathar, Jun 18 2009
FORMULA
a(n) = 10*a(n-1) - 23*a(n-2). - R. J. Mathar, Jun 18 2009
G.f.: (1-4*x)/(1-10*x+23*x^2). - R. J. Mathar, Jun 18 2009
E.g.f.: exp(5*x)*(2*cosh(sqrt(2)*x) + sqrt(2)*sinh(sqrt(2)*x))/2. - G. C. Greubel, Apr 03 2018
MATHEMATICA
CoefficientList[Series[(1-4*z)/(23*z^2-10*z+1), {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 12 2011 *)
LinearRecurrence[{10, -23}, {1, 6}, 50] (* G. C. Greubel, Apr 03 2018 *)
PROG
(PARI) F=nfinit(x^2-2); for(n=0, 20, print1(nfeltdiv(F, ((2+x)*(5+x)^n+(2-x)*(5-x)^n), 4)[1], ", ")) \\ Klaus Brockhaus, Jun 19 2009
(Magma) [Floor(((2+Sqrt(2))*(5+Sqrt(2))^n+(2-Sqrt(2))*(5-Sqrt(2))^n)/4): n in [0..30]]; // Vincenzo Librandi, Aug 18 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Jun 17 2009
EXTENSIONS
Extended by R. J. Mathar and Klaus Brockhaus, Jun 18 2009
Edited by Klaus Brockhaus, Jul 05 2009
STATUS
approved

Search completed in 0.009 seconds