[go: up one dir, main page]

login
Search: a082176 -id:a082176
     Sort: relevance | references | number | modified | created      Format: long | short | data
Professor Umbugio's sequence A082176 divided by 1946.
+20
3
0, 0, 106, 577647, 2109982576, 6456944905215, 17876660472035956, 46430207928537211947, 115421885515464173794096, 278025223449261230834594535, 654161903716240398404947790956, 1511819633343397824988525954009347, 3445493586033489292364092421921715016
OFFSET
0,3
COMMENTS
For references and details see A082176.
LINKS
H. E. G. P., Elementary problem No. E716, Professor Umbugio's Prediction, Solution by E. P. Starke, American Math. Monthly 54:1 (1947), pp. 43-44.
Index entries for linear recurrences with constant coefficients, signature (7266,-19690571,23585007306,-10533473613720).
FORMULA
a(n) = (1492^n - 1770^n - 1863^n + 2141^n)/1946 = A082176(n)/1946.
From Colin Barker, Nov 21 2015: (Start)
a(n) = 7266*a(n-1) - 19690571*a(n-2) + 23585007306*a(n-3) - 10533473613720*a(n-4) for n>3.
G.f.: 53*x^2*(2-3633*x) / ((1-1492*x)*(1-1770*x)*(1-1863*x)*(1-2141*x)). (End)
E.g.f.: exp(1492*x)*(1 - exp(278*x) - exp(371*x) + exp(649*x))/1946. - G. C. Greubel, Jan 21 2024
MAPLE
A082177:=n->(1492^n - 1770^n - 1863^n + 2141^n)/1946: seq(A082177(n), n=0..15); # Wesley Ivan Hurt, Nov 21 2015
MATHEMATICA
Table[(1492^n - 1770^n - 1863^n + 2141^n)/1946, {n, 0, 20}] (* Michael De Vlieger, Nov 21 2015 *)
CoefficientList[Series[53 x^2 (2-3633 x)/((1-1492 x) (1-1770 x) (1-1863 x) (1-2141 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Nov 22 2015 *)
PROG
(PARI) concat(vector(2), Vec(53*x^2*(2-3633*x)/((1-1492*x)*(1-1770*x)*(1-1863*x)*(1-2141*x)) + O(x^15))) \\ Colin Barker, Nov 21 2015
(Magma) [(1492^n - 1770^n - 1863^n + 2141^n)/1946 : n in [0..15]]; // Wesley Ivan Hurt, Nov 21 2015
(Magma) I:=[0, 0, 106, 577647]; [n le 4 select I[n] else 7266*Self(n-1)-19690571*Self(n-2)+23585007306*Self(n-3)- 10533473613720*Self(n-4): n in [1..20]]; // Vincenzo Librandi, Nov 22 2015
(SageMath) [(1492^n - 1770^n - 1863^n + 2141^n)/1946 for n in range(21)] # G. C. Greubel, Jan 21 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Apr 25 2003
STATUS
approved
Professor Umbugio's sequence A082176 divided by 2*7*53*139 = 103138.
+20
3
0, 0, 2, 10899, 39810992, 121829149155, 337295480604452, 876041659029003999, 2177771424820078750832, 5245758933004928883671595, 12342677428608309403866939452, 28524898742328260848840112339799, 65009312944028099855926272111730472
OFFSET
0,3
COMMENTS
For references and details see A082176.
LINKS
H. E. G. P., Elementary problem No. E716, Professor Umbugio's Prediction, Solution by E. P. Starke, American Math. Monthly 54:1 (1947), pp. 43-44.
Index entries for linear recurrences with constant coefficients, signature (7266,-19690571,23585007306,-10533473613720).
FORMULA
a(n) = (1492^n - 1770^n - 1863^n + 2141^n)/103138 = A082176(n)/103138 = A082177(n)/53.
From Colin Barker, Nov 21 2015: (Start)
a(n) = 7266*a(n-1) - 19690571*a(n-2) + 23585007306*a(n-3) - 10533473613720*a(n-4) for n>3.
G.f.: x^2*(2-3633*x) / ((1-1492*x)*(1-1770*x)*(1-1863*x)*(1-2141*x)). (End)
E.g.f.: exp(1492*x)*(1 - exp(278*x) - exp(371*x) + exp(649*x))/103138. - G. C. Greubel, Jan 22 2024
MATHEMATICA
Table[(1492^n - 1770^n - 1863^n + 2141^n)/103138, {n, 0, 12}] (* Michael De Vlieger, Nov 21 2015 *)
CoefficientList[Series[x^2 (2-3633*x)/((1-1492 x) (1-1770 x) (1-1863 x) (1-2141 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Nov 22 2015 *)
LinearRecurrence[{7266, -19690571, 23585007306, -10533473613720}, {0, 0, 2, 10899}, 20] (* Harvey P. Dale, Jun 25 2017 *)
PROG
(PARI) concat(vector(2), Vec(x^2*(2-3633*x) / ((1-1492*x)*(1-1770*x)*(1-1863*x)*(1-2141*x)) + O(x^15))) \\ Colin Barker, Nov 21 2015
(Magma) [(1492^n-1770^n-1863^n+2141^n)/103138 : n in [0..20]]; // Vincenzo Librandi, Nov 22 2015
(SageMath) [(1492^n-1770^n-1863^n+2141^n)/103138 for n in range(21)] # G. C. Greubel, Jan 22 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Apr 25 2003
STATUS
approved

Search completed in 0.008 seconds