[go: up one dir, main page]

login
Search: a081691 -id:a081691
     Sort: relevance | references | number | modified | created      Format: long | short | data
From P-positions in a certain game.
+10
2
0, 1, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77
OFFSET
0,3
LINKS
A. S. Fraenkel, New games related to old and new sequences, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 4, Paper G6, 2004.
FORMULA
Let a(n) = this sequence, b(n) = A081691. Then a(n) = mex{ a(i), b(i) : 0 <= i < n}, b(0) = 0, b(n) = 2(b(n-1) - a(n-1)) + a(n) + 1 = a(n) + 2^n - 1.
CROSSREFS
Apart from initial zero, complement of A081691.
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 02 2003
EXTENSIONS
Corrected and extended by Vladeta Jovovic, Apr 04 2003
STATUS
approved
Define two sequences by A_n = mex{A_i,B_i : 0 <= i < n}, B_n = B_{n-1} + (A_n-A_{n-1})(A_n-A_{n-1}+1), where the mex of a set is the smallest nonnegative integer not in the set. Sequence gives A_n. B_n is in A081693.
+10
2
0, 1, 3, 4, 5, 6, 7, 9, 11, 13, 15, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 49, 51, 53, 55, 56, 57, 58, 59, 61, 63, 65, 67, 69, 70, 71, 72, 73, 75, 77, 79, 81, 83, 84, 85, 86, 87, 89, 91, 93, 95, 97, 98, 99, 100
OFFSET
0,3
COMMENTS
Conjecture: Except for the initial 0, this is the sequence of positions of 0 in the fixed point of the morphism 0->01, 1->0000; see A284683. - Clark Kimberling, Apr 13 2017
LINKS
A. S. Fraenkel, Home Page
A. S. Fraenkel, New games related to old and new sequences, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 4, Paper G6, 2004.
FORMULA
Let a(n) = this sequence, b(n) = A081691. Then a(n) = mex{ a(i), b(i) : 0 <= i < n}, b(0) = 0, b(n) = 2(b(n-1) - a(n-1)) + a(n) + 1.
MATHEMATICA
mex[{}]=0; mex[s_] := Complement[Range[0, 1+Max@@s], s][[1]]; A[0]=B[0]=0; A[n_] := A[n]=mex[Flatten[Table[{A[i], B[i]}, {i, 0, n-1}]]]; B[n_] := B[n]=B[n-1]+(A[n]-A[n-1])*(A[n]-A[n-1]+1); a := A
CROSSREFS
Apart from initial zero, complement of A081693. Cf. A081691.
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 02 2003
EXTENSIONS
More terms from Vladeta Jovovic, Apr 04 2003
STATUS
approved
Define two sequences by A_n = mex{A_i,B_i : 0 <= i < n}, B_n = B_{n-1} + (A_n-A_{n-1})(A_n-A_{n-1}+1), where the mex of a set is the smallest nonnegative integer not in the set. Sequence gives B_n. A_n is in A081692.
+10
2
0, 2, 8, 10, 12, 14, 16, 22, 28, 34, 40, 46, 48, 50, 52, 54, 60, 62, 64, 66, 68, 74, 76, 78, 80, 82, 88, 90, 92, 94, 96, 102, 104, 106, 108, 110, 116, 122, 128, 134, 140, 142, 144, 146, 148, 154, 160, 166, 172, 178, 180, 182, 184, 186, 192, 198, 204, 210, 216, 218
OFFSET
0,2
COMMENTS
Conjecture: Except for the initial 0, this is the sequence of positions of 1 in the fixed point of the morphism 0->01, 1->0000; see A284683. - Clark Kimberling, April 13 2017
LINKS
A. S. Fraenkel, Home Page
A. S. Fraenkel, New games related to old and new sequences, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 4, Paper G6, 2004.
MATHEMATICA
mex[{}]=0; mex[s_] := Complement[Range[0, 1+Max@@s], s][[1]]; A[0]=B[0]=0; A[n_] := A[n]=mex[Flatten[Table[{A[i], B[i]}, {i, 0, n-1}]]]; B[n_] := B[n]=B[n-1]+(A[n]-A[n-1])*(A[n]-A[n-1]+1); a := B
CROSSREFS
Apart from initial terms, complement of A081692. Cf. A081691.
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 02 2003
EXTENSIONS
More terms from Vladeta Jovovic, Apr 04 2003
STATUS
approved
a(n) = 9^n - 8^n - 7^n - 6^n + 3*5^n.
+10
1
1, 3, 7, 33, 643, 11073, 151867, 1816713, 19996963, 208630833, 2099398027, 20597485593, 198424412083, 1885822419393, 17740469253787, 165580566245673, 1535948935336003, 14178113530908753, 130361707324735147, 1194785495130736953, 10921581632007328723, 99616564791408530913
OFFSET
0,2
COMMENTS
Binomial transform of A081687.
FORMULA
G.f.: -(4182*x^4-2082*x^3+387*x^2-32*x+1)/((5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)*(9*x-1)). [Colin Barker, Aug 12 2012]
From Elmo R. Oliveira, Sep 12 2024: (Start)
E.g.f.: exp(5*x)*(exp(4*x) - exp(3*x) - exp(2*x) - exp(x) + 3).
a(n) = 35*a(n-1) - 485*a(n-2) + 3325*a(n-3) - 11274*a(n-4) + 15120*a(n-5) for n > 4. (End)
MATHEMATICA
LinearRecurrence[{35, -485, 3325, -11274, 15120}, {1, 3, 7, 33, 643}, 30] (* Harvey P. Dale, Jun 26 2017 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 30 2003
EXTENSIONS
a(19)-a(21) from Elmo R. Oliveira, Sep 12 2024
STATUS
approved
Losing positions n (P-positions) in the following game: two players take turns dividing the current value of n by either a prime power > 1 or by A007947(n) to obtain the new value of n. The winner is the player whose division results in 1.
+10
0
1, 12, 18, 20, 28, 44, 45, 50, 52, 63, 68, 75, 76, 92, 98, 99, 116, 117, 120, 124, 147, 148, 153, 164, 168, 171, 172, 175, 188, 207, 212, 216, 236, 242, 244, 245, 261, 264, 268, 270, 275, 279, 280, 284, 292, 312, 316, 325, 332, 333, 338, 356, 363, 369, 378, 387, 388
OFFSET
1,2
COMMENTS
The game is equivalent to the game of Nim with the additional allowed move consisting of removing one object from each pile.
MATHEMATICA
Clear[moves, los]; A003557[n_]:= {Module[{aux = FactorInteger[n], L=Length[FactorInteger[n]]}, Product[aux[[i, 1]]^(aux[[i, 2]]-1), {i, L}]]};
moves[n_] :=moves[n] = Module[{aux = FactorInteger[n], L=Length[ FactorInteger [n]]}, Union[Flatten[Table[n/aux[[i, 1]]^j, {i, 1, L}, {j, 1, aux[[i, 2]]}], 1], A003557[n]]]; los[1]=True; los[m_] := los[m] = If[PrimeQ[m], False, Union@Flatten@Table[los[moves[m][[i]]], {i, 1, Length[moves[m]]}] == {False}]; Select[Range[400], los]
KEYWORD
nonn
AUTHOR
STATUS
approved

Search completed in 0.007 seconds